检测/分割/跟踪


2023-05-11 更新

Segment Anything Model (SAM) Enhanced Pseudo Labels for Weakly Supervised Semantic Segmentation

Authors:Tianle Chen, Zheda Mai, Ruiwen Li, Wei-lun Chao

Weakly Supervised Semantic Segmentation (WSSS) with only image-level supervision has garnered increasing attention due to its low annotation cost compared to pixel-level annotation. Most existing methods rely on Class Activation Maps (CAM) to generate pixel-level pseudo labels for supervised training. However, it is well known that CAM often suffers from partial activation — activating the most discriminative part instead of the entire object area, and false activation — unnecessarily activating the background around the object. In this study, we introduce a simple yet effective approach to address these limitations by harnessing the recently released Segment Anything Model (SAM) to generate higher-quality pseudo labels with CAM. SAM is a segmentation foundation model that demonstrates strong zero-shot ability in partitioning images into segments but lacks semantic labels for these regions. To circumvent this, we employ pseudo labels for a specific class as the signal to select the most relevant masks and label them to generate the refined pseudo labels for this class. The segments generated by SAM are highly precise, leading to substantial improvements in partial and false activation. Moreover, existing post-processing modules for producing pseudo labels, such as AffinityNet, are often computationally heavy, with a significantly long training time. Surprisingly, we discovered that using the initial CAM with SAM can achieve on-par performance as the post-processed pseudo label generated from these modules with much less computational cost. Our approach is highly versatile and capable of seamless integration into existing WSSS models without modification to base networks or pipelines. Despite its simplicity, our approach improves the mean Intersection over Union (mIoU) of pseudo labels from five state-of-the-art WSSS methods by 6.2\% on average on the PASCAL VOC 2012 dataset.
PDF Tianle Chen and Zheda Mai contributed equally to this work. Our code is available at \url{https://github.com/cskyl/SAM_WSSS}

点此查看论文截图

A Self-Training Framework Based on Multi-Scale Attention Fusion for Weakly Supervised Semantic Segmentation

Authors:Guoqing Yang, Chuang Zhu, Yu Zhang

Weakly supervised semantic segmentation (WSSS) based on image-level labels is challenging since it is hard to obtain complete semantic regions. To address this issue, we propose a self-training method that utilizes fused multi-scale class-aware attention maps. Our observation is that attention maps of different scales contain rich complementary information, especially for large and small objects. Therefore, we collect information from attention maps of different scales and obtain multi-scale attention maps. We then apply denoising and reactivation strategies to enhance the potential regions and reduce noisy areas. Finally, we use the refined attention maps to retrain the network. Experiments showthat our method enables the model to extract rich semantic information from multi-scale images and achieves 72.4% mIou scores on both the PASCAL VOC 2012 validation and test sets. The code is available at https://bupt-ai-cz.github.io/SMAF.
PDF

点此查看论文截图

Radious: Unveiling the Enigma of Dental Radiology with BEIT Adaptor and Mask2Former in Semantic Segmentation

Authors:Mohammad Mashayekhi, Sara Ahmadi Majd, Arian Amiramjadi, Babak Mashayekhi

X-ray images are the first steps for diagnosing and further treating dental problems. So, early diagnosis prevents the development and increase of oral and dental diseases. In this paper, we developed a semantic segmentation algorithm based on BEIT adaptor and Mask2Former to detect and identify teeth, roots, and multiple dental diseases and abnormalities such as pulp chamber, restoration, endodontics, crown, decay, pin, composite, bridge, pulpitis, orthodontics, radicular cyst, periapical cyst, cyst, implant, and bone graft material in panoramic, periapical, and bitewing X-ray images. We compared the result of our algorithm to two state-of-the-art algorithms in image segmentation named: Deeplabv3 and Segformer on our own data set. We discovered that Radious outperformed those algorithms by increasing the mIoU scores by 9% and 33% in Deeplabv3+ and Segformer, respectively.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录