无监督/半监督/对比学习


2023-05-05 更新

Density Invariant Contrast Maximization for Neuromorphic Earth Observations

Authors:Sami Arja, Alexandre Marcireau, Richard L. Balthazor, Matthew G. McHarg, Saeed Afshar, Gregory Cohen

Contrast maximization (CMax) techniques are widely used in event-based vision systems to estimate the motion parameters of the camera and generate high-contrast images. However, these techniques are noise-intolerance and suffer from the multiple extrema problem which arises when the scene contains more noisy events than structure, causing the contrast to be higher at multiple locations. This makes the task of estimating the camera motion extremely challenging, which is a problem for neuromorphic earth observation, because, without a proper estimation of the motion parameters, it is not possible to generate a map with high contrast, causing important details to be lost. Similar methods that use CMax addressed this problem by changing or augmenting the objective function to enable it to converge to the correct motion parameters. Our proposed solution overcomes the multiple extrema and noise-intolerance problems by correcting the warped event before calculating the contrast and offers the following advantages: it does not depend on the event data, it does not require a prior about the camera motion, and keeps the rest of the CMax pipeline unchanged. This is to ensure that the contrast is only high around the correct motion parameters. Our approach enables the creation of better motion-compensated maps through an analytical compensation technique using a novel dataset from the International Space Station (ISS). Code is available at \url{https://github.com/neuromorphicsystems/event_warping}
PDF Accepted to 2023 CVPRW Workshop on Event-Based Vision

点此查看论文截图

FormNetV2: Multimodal Graph Contrastive Learning for Form Document Information Extraction

Authors:Chen-Yu Lee, Chun-Liang Li, Hao Zhang, Timothy Dozat, Vincent Perot, Guolong Su, Xiang Zhang, Kihyuk Sohn, Nikolai Glushnev, Renshen Wang, Joshua Ainslie, Shangbang Long, Siyang Qin, Yasuhisa Fujii, Nan Hua, Tomas Pfister

The recent advent of self-supervised pre-training techniques has led to a surge in the use of multimodal learning in form document understanding. However, existing approaches that extend the mask language modeling to other modalities require careful multi-task tuning, complex reconstruction target designs, or additional pre-training data. In FormNetV2, we introduce a centralized multimodal graph contrastive learning strategy to unify self-supervised pre-training for all modalities in one loss. The graph contrastive objective maximizes the agreement of multimodal representations, providing a natural interplay for all modalities without special customization. In addition, we extract image features within the bounding box that joins a pair of tokens connected by a graph edge, capturing more targeted visual cues without loading a sophisticated and separately pre-trained image embedder. FormNetV2 establishes new state-of-the-art performance on FUNSD, CORD, SROIE and Payment benchmarks with a more compact model size.
PDF Accepted to ACL 2023

点此查看论文截图

Forward-Forward Contrastive Learning

Authors:Md. Atik Ahamed, Jin Chen, Abdullah-Al-Zubaer Imran

Medical image classification is one of the most important tasks for computer-aided diagnosis. Deep learning models, particularly convolutional neural networks, have been successfully used for disease classification from medical images, facilitated by automated feature learning. However, the diverse imaging modalities and clinical pathology make it challenging to construct generalized and robust classifications. Towards improving the model performance, we propose a novel pretraining approach, namely Forward Forward Contrastive Learning (FFCL), which leverages the Forward-Forward Algorithm in a contrastive learning framework—both locally and globally. Our experimental results on the chest X-ray dataset indicate that the proposed FFCL achieves superior performance (3.69% accuracy over ImageNet pretrained ResNet-18) over existing pretraining models in the pneumonia classification task. Moreover, extensive ablation experiments support the particular local and global contrastive pretraining design in FFCL.
PDF Accepted at Medical Imaging with Deep Learning (MIDL) 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录