检测/分割/跟踪


2023-05-03 更新

OriCon3D: Effective 3D Object Detection using Orientation and Confidence

Authors:Dhyey Manish Rajani, Rahul Kashyap Swayampakula, Surya Pratap Singh

We introduce a technique for detecting 3D objects and estimating their position from a single image. Our method is built on top of a similar state-of-the-art technique [1], but with improved accuracy. The approach followed in this research first estimates common 3D properties of an object using a Deep Convolutional Neural Network (DCNN), contrary to other frameworks that only leverage centre-point predictions. We then combine these estimates with geometric constraints provided by a 2D bounding box to produce a complete 3D bounding box. The first output of our network estimates the 3D object orientation using a discrete-continuous loss [1]. The second output predicts the 3D object dimensions with minimal variance. Here we also present our extensions by augmenting light-weight feature extractors and a customized multibin architecture. By combining these estimates with the geometric constraints of the 2D bounding box, we can accurately (or comparatively) determine the 3D object pose better than our baseline [1] on the KITTI 3D detection benchmark [2].
PDF

点此查看论文截图

A positive feedback method based on F-measure value for Salient Object Detection

Authors:Ailing Pan, Chao Dai, Chen Pan, Dongping Zhang, Yunchao Xu

The majority of current salient object detection (SOD) models are focused on designing a series of decoders based on fully convolutional networks (FCNs) or Transformer architectures and integrating them in a skillful manner. These models have achieved remarkable high performance and made significant contributions to the development of SOD. Their primary research objective is to develop novel algorithms that can outperform state-of-the-art models, a task that is extremely difficult and time-consuming. In contrast, this paper proposes a positive feedback method based on F-measure value for SOD, aiming to improve the accuracy of saliency prediction using existing methods. Specifically, our proposed method takes an image to be detected and inputs it into several existing models to obtain their respective prediction maps. These prediction maps are then fed into our positive feedback method to generate the final prediction result, without the need for careful decoder design or model training. Moreover, our method is adaptive and can be implemented based on existing models without any restrictions. Experimental results on five publicly available datasets show that our proposed positive feedback method outperforms the latest 12 methods in five evaluation metrics for saliency map prediction. Additionally, we conducted a robustness experiment, which shows that when at least one good prediction result exists in the selected existing model, our proposed approach can ensure that the prediction result is not worse. Our approach achieves a prediction speed of 20 frames per second (FPS) when evaluated on a low configuration host and after removing the prediction time overhead of inserted models. These results highlight the effectiveness, efficiency, and robustness of our proposed approach for salient object detection.
PDF 13 pages, 4 figures, 3 table

点此查看论文截图

TransCAR: Transformer-based Camera-And-Radar Fusion for 3D Object Detection

Authors:Su Pang, Daniel Morris, Hayder Radha

Despite radar’s popularity in the automotive industry, for fusion-based 3D object detection, most existing works focus on LiDAR and camera fusion. In this paper, we propose TransCAR, a Transformer-based Camera-And-Radar fusion solution for 3D object detection. Our TransCAR consists of two modules. The first module learns 2D features from surround-view camera images and then uses a sparse set of 3D object queries to index into these 2D features. The vision-updated queries then interact with each other via transformer self-attention layer. The second module learns radar features from multiple radar scans and then applies transformer decoder to learn the interactions between radar features and vision-updated queries. The cross-attention layer within the transformer decoder can adaptively learn the soft-association between the radar features and vision-updated queries instead of hard-association based on sensor calibration only. Finally, our model estimates a bounding box per query using set-to-set Hungarian loss, which enables the method to avoid non-maximum suppression. TransCAR improves the velocity estimation using the radar scans without temporal information. The superior experimental results of our TransCAR on the challenging nuScenes datasets illustrate that our TransCAR outperforms state-of-the-art Camera-Radar fusion-based 3D object detection approaches.
PDF

点此查看论文截图

Discriminative Co-Saliency and Background Mining Transformer for Co-Salient Object Detection

Authors:Long Li, Junwei Han, Ni Zhang, Nian Liu, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan

Most previous co-salient object detection works mainly focus on extracting co-salient cues via mining the consistency relations across images while ignoring explicit exploration of background regions. In this paper, we propose a Discriminative co-saliency and background Mining Transformer framework (DMT) based on several economical multi-grained correlation modules to explicitly mine both co-saliency and background information and effectively model their discrimination. Specifically, we first propose a region-to-region correlation module for introducing inter-image relations to pixel-wise segmentation features while maintaining computational efficiency. Then, we use two types of pre-defined tokens to mine co-saliency and background information via our proposed contrast-induced pixel-to-token correlation and co-saliency token-to-token correlation modules. We also design a token-guided feature refinement module to enhance the discriminability of the segmentation features under the guidance of the learned tokens. We perform iterative mutual promotion for the segmentation feature extraction and token construction. Experimental results on three benchmark datasets demonstrate the effectiveness of our proposed method. The source code is available at: https://github.com/dragonlee258079/DMT.
PDF Accepted by CVPR 2023

点此查看论文截图

CLIP-S$^4$: Language-Guided Self-Supervised Semantic Segmentation

Authors:Wenbin He, Suphanut Jamonnak, Liang Gou, Liu Ren

Existing semantic segmentation approaches are often limited by costly pixel-wise annotations and predefined classes. In this work, we present CLIP-S$^4$ that leverages self-supervised pixel representation learning and vision-language models to enable various semantic segmentation tasks (e.g., unsupervised, transfer learning, language-driven segmentation) without any human annotations and unknown class information. We first learn pixel embeddings with pixel-segment contrastive learning from different augmented views of images. To further improve the pixel embeddings and enable language-driven semantic segmentation, we design two types of consistency guided by vision-language models: 1) embedding consistency, aligning our pixel embeddings to the joint feature space of a pre-trained vision-language model, CLIP; and 2) semantic consistency, forcing our model to make the same predictions as CLIP over a set of carefully designed target classes with both known and unknown prototypes. Thus, CLIP-S$^4$ enables a new task of class-free semantic segmentation where no unknown class information is needed during training. As a result, our approach shows consistent and substantial performance improvement over four popular benchmarks compared with the state-of-the-art unsupervised and language-driven semantic segmentation methods. More importantly, our method outperforms these methods on unknown class recognition by a large margin.
PDF The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023

点此查看论文截图

An Alternative to WSSS? An Empirical Study of the Segment Anything Model (SAM) on Weakly-Supervised Semantic Segmentation Problems

Authors:Weixuan Sun, Zheyuan Liu, Yanhao Zhang, Yiran Zhong, Nick Barnes

The Segment Anything Model (SAM) has demonstrated exceptional performance and versatility, making it a promising tool for various related tasks. In this report, we explore the application of SAM in Weakly-Supervised Semantic Segmentation (WSSS). Particularly, we adapt SAM as the pseudo-label generation pipeline given only the image-level class labels. While we observed impressive results in most cases, we also identify certain limitations. Our study includes performance evaluations on PASCAL VOC and MS-COCO, where we achieved remarkable improvements over the latest state-of-the-art methods on both datasets. We anticipate that this report encourages further explorations of adopting SAM in WSSS, as well as wider real-world applications.
PDF Technique report

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录