Few-Shot


2023-05-03 更新

RexUIE: A Recursive Method with Explicit Schema Instructor for Universal Information Extraction

Authors:Chengyuan Liu, Fubang Zhao, Yangyang Kang, Jingyuan Zhang, Xiang Zhou, Changlong Sun, Fei Wu, Kun Kuang

Universal Information Extraction (UIE) is an area of interest due to the challenges posed by varying targets, heterogeneous structures, and demand-specific schemas. However, previous works have only achieved limited success by unifying a few tasks, such as Named Entity Recognition (NER) and Relation Extraction (RE), which fall short of being authentic UIE models particularly when extracting other general schemas such as quadruples and quintuples. Additionally, these models used an implicit structural schema instructor, which could lead to incorrect links between types, hindering the model’s generalization and performance in low-resource scenarios. In this paper, we redefine the authentic UIE with a formal formulation that encompasses almost all extraction schemas. To the best of our knowledge, we are the first to introduce UIE for any kind of schemas. In addition, we propose RexUIE, which is a Recursive Method with Explicit Schema Instructor for UIE. To avoid interference between different types, we reset the position ids and attention mask matrices. RexUIE shows strong performance under both full-shot and few-shot settings and achieves State-of-the-Art results on the tasks of extracting complex schemas.
PDF

点此查看论文截图

HQP: A Human-Annotated Dataset for Detecting Online Propaganda

Authors:Abdurahman Maarouf, Dominik Bär, Dominique Geissler, Stefan Feuerriegel

Online propaganda poses a severe threat to the integrity of societies. However, existing datasets for detecting online propaganda have a key limitation: they were annotated using weak labels that can be noisy and even incorrect. To address this limitation, our work makes the following contributions: (1) We present HQP: a novel dataset (N=30,000) for detecting online propaganda with high-quality labels. To the best of our knowledge, HQP is the first dataset for detecting online propaganda that was created through human annotation. (2) We show empirically that state-of-the-art language models fail in detecting online propaganda when trained with weak labels (AUC: 64.03). In contrast, state-of-the-art language models can accurately detect online propaganda when trained with our high-quality labels (AUC: 92.25), which is an improvement of ~44%. (3) To address the cost of labeling, we extend our work to few-shot learning. Specifically, we show that prompt-based learning using a small sample of high-quality labels can still achieve a reasonable performance (AUC: 80.27). Finally, we discuss implications for the NLP community to balance the cost and quality of labeling. Crucially, our work highlights the importance of high-quality labels for sensitive NLP tasks such as propaganda detection.
PDF

点此查看论文截图

SAM on Medical Images: A Comprehensive Study on Three Prompt Modes

Authors:Dongjie Cheng, Ziyuan Qin, Zekun Jiang, Shaoting Zhang, Qicheng Lao, Kang Li

The Segment Anything Model (SAM) made an eye-catching debut recently and inspired many researchers to explore its potential and limitation in terms of zero-shot generalization capability. As the first promptable foundation model for segmentation tasks, it was trained on a large dataset with an unprecedented number of images and annotations. This large-scale dataset and its promptable nature endow the model with strong zero-shot generalization. Although the SAM has shown competitive performance on several datasets, we still want to investigate its zero-shot generalization on medical images. As we know, the acquisition of medical image annotation usually requires a lot of effort from professional practitioners. Therefore, if there exists a foundation model that can give high-quality mask prediction simply based on a few point prompts, this model will undoubtedly become the game changer for medical image analysis. To evaluate whether SAM has the potential to become the foundation model for medical image segmentation tasks, we collected more than 12 public medical image datasets that cover various organs and modalities. We also explore what kind of prompt can lead to the best zero-shot performance with different modalities. Furthermore, we find that a pattern shows that the perturbation of the box size will significantly change the prediction accuracy. Finally, Extensive experiments show that the predicted mask quality varied a lot among different datasets. And providing proper prompts, such as bounding boxes, to the SAM will significantly increase its performance.
PDF 6 pages, 3 figures

点此查看论文截图

Explainable Verbal Reasoner Plus (EVR+): A Natural Language Reasoning Framework that Supports Diverse Compositional Reasoning

Authors:Zhengzhong Liang, Zeyu Zhang, Steven Bethard, Mihai Surdeanu

Languages models have been successfully applied to a variety of reasoning tasks in NLP, yet the language models still suffer from compositional generalization. In this paper we present Explainable Verbal Reasoner Plus (EVR+), a reasoning framework that enhances language models’ compositional reasoning ability by (1) allowing the model to explicitly generate and execute symbolic operators, and (2) allowing the model to decompose a complex task into several simpler ones in a flexible manner. Compared with its predecessor Explainable Verbal Reasoner (EVR) and other previous approaches adopting similar ideas, our framework supports more diverse types of reasoning such as nested loops and different types of recursion. To evaluate our reasoning framework, we build a synthetic dataset with five tasks that require compositional reasoning. Results show that our reasoning framework can enhance the language model’s compositional generalization performance on the five tasks, using a fine-tuned language model. We also discussed the possibility and the challenges to combine our reasoning framework with a few-shot prompted language model.
PDF

点此查看论文截图

Few-shot Classification via Ensemble Learning with Multi-Order Statistics

Authors:Sai Yang, Fan Liu, Delong Chen, Jun Zhou

Transfer learning has been widely adopted for few-shot classification. Recent studies reveal that obtaining good generalization representation of images on novel classes is the key to improving the few-shot classification accuracy. To address this need, we prove theoretically that leveraging ensemble learning on the base classes can correspondingly reduce the true error in the novel classes. Following this principle, a novel method named Ensemble Learning with Multi-Order Statistics (ELMOS) is proposed in this paper. In this method, after the backbone network, we use multiple branches to create the individual learners in the ensemble learning, with the goal to reduce the storage cost. We then introduce different order statistics pooling in each branch to increase the diversity of the individual learners. The learners are optimized with supervised losses during the pre-training phase. After pre-training, features from different branches are concatenated for classifier evaluation. Extensive experiments demonstrate that each branch can complement the others and our method can produce a state-of-the-art performance on multiple few-shot classification benchmark datasets.
PDF Accepted by IJCAI-23

点此查看论文截图

Decomposition Enhances Reasoning via Self-Evaluation Guided Decoding

Authors:Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, Qizhe Xie

We endow Large Language Models (LLMs) with fine-grained self-evaluation to refine multi-step reasoning inference. We propose an effective prompting approach that integrates self-evaluation guidance through stochastic beam search. Our approach explores the reasoning search space using a well-calibrated automatic criterion. This enables an efficient search to produce higher-quality final predictions. With the self-evaluation guided stochastic beam search, we also balance the quality-diversity trade-off in the generation of reasoning chains. This allows our approach to adapt well with majority voting and surpass the corresponding Codex-backboned baselines by $6.34\%$, $9.56\%$, and $5.46\%$ on the GSM8K, AQuA, and StrategyQA benchmarks, respectively, in few-shot accuracy. Analysis of our decompositional reasoning finds it pinpoints logic failures and leads to higher consistency and robustness. Our code is publicly available at https://github.com/YuxiXie/SelfEval-Guided-Decoding.
PDF Our code is publicly available at https://github.com/YuxiXie/SelfEval-Guided-Decoding

点此查看论文截图

Faster OreFSDet : A Lightweight and Effective Few-shot Object Detector for Ore Images

Authors:Yang Zhang, Le Cheng, Yuting Peng, Chengming Xu, Yanwei Fu, Bo Wu, Guodong Sun

For the ore particle size detection, obtaining a sizable amount of high-quality ore labeled data is time-consuming and expensive. General object detection methods often suffer from severe over-fitting with scarce labeled data. Despite their ability to eliminate over-fitting, existing few-shot object detectors encounter drawbacks such as slow detection speed and high memory requirements, making them difficult to implement in a real-world deployment scenario. To this end, we propose a lightweight and effective few-shot detector to achieve competitive performance with general object detection with only a few samples for ore images. First, the proposed support feature mining block characterizes the importance of location information in support features. Next, the relationship guidance block makes full use of support features to guide the generation of accurate candidate proposals. Finally, the dual-scale semantic aggregation module retrieves detailed features at different resolutions to contribute with the prediction process. Experimental results show that our method consistently exceeds the few-shot detectors with an excellent performance gap on all metrics. Moreover, our method achieves the smallest model size of 19MB as well as being competitive at 50 FPS detection speed compared with general object detectors. The source code is available at https://github.com/MVME-HBUT/Faster-OreFSDet.
PDF 18 pages, 11 figures

点此查看论文截图

Prompt as Triggers for Backdoor Attack: Examining the Vulnerability in Language Models

Authors:Shuai Zhao, Jinming Wen, Luu Anh Tuan, Junbo Zhao, Jie Fu

The prompt-based learning paradigm, which bridges the gap between pre-training and fine-tuning, achieves state-of-the-art performance on several NLP tasks, particularly in few-shot settings. Despite being widely applied, prompt-based learning is vulnerable to backdoor attacks. Textual backdoor attacks are designed to introduce targeted vulnerabilities into models by poisoning a subset of training samples through trigger injection and label modification. However, they suffer from flaws such as abnormal natural language expressions resulting from the trigger and incorrect labeling of poisoned samples. In this study, we propose {\bf ProAttack}, a novel and efficient method for performing clean-label backdoor attacks based on the prompt, which uses the prompt itself as a trigger. Our method does not require external triggers and ensures correct labeling of poisoned samples, improving the stealthy nature of the backdoor attack. With extensive experiments on rich-resource and few-shot text classification tasks, we empirically validate ProAttack’s competitive performance in textual backdoor attacks. Notably, in the rich-resource setting, ProAttack achieves state-of-the-art attack success rates in the clean-label backdoor attack benchmark without external triggers. All data and code used in our models are publically available\footnote{\url{https://github.com/shuaizhao95/Prompt_attack}}.
PDF

点此查看论文截图

DreamPaint: Few-Shot Inpainting of E-Commerce Items for Virtual Try-On without 3D Modeling

Authors:Mehmet Saygin Seyfioglu, Karim Bouyarmane, Suren Kumar, Amir Tavanaei, Ismail B. Tutar

We introduce DreamPaint, a framework to intelligently inpaint any e-commerce product on any user-provided context image. The context image can be, for example, the user’s own image for virtual try-on of clothes from the e-commerce catalog on themselves, the user’s room image for virtual try-on of a piece of furniture from the e-commerce catalog in their room, etc. As opposed to previous augmented-reality (AR)-based virtual try-on methods, DreamPaint does not use, nor does it require, 3D modeling of neither the e-commerce product nor the user context. Instead, it directly uses 2D images of the product as available in product catalog database, and a 2D picture of the context, for example taken from the user’s phone camera. The method relies on few-shot fine tuning a pre-trained diffusion model with the masked latents (e.g., Masked DreamBooth) of the catalog images per item, whose weights are then loaded on a pre-trained inpainting module that is capable of preserving the characteristics of the context image. DreamPaint allows to preserve both the product image and the context (environment/user) image without requiring text guidance to describe the missing part (product/context). DreamPaint also allows to intelligently infer the best 3D angle of the product to place at the desired location on the user context, even if that angle was previously unseen in the product’s reference 2D images. We compare our results against both text-guided and image-guided inpainting modules and show that DreamPaint yields superior performance in both subjective human study and quantitative metrics.
PDF

点此查看论文截图

How to Unleash the Power of Large Language Models for Few-shot Relation Extraction?

Authors:Xin Xu, Yuqi Zhu, Xiaohan Wang, Ningyu Zhang

Scaling language models have revolutionized widespread NLP tasks, yet little comprehensively explored few-shot relation extraction with large language models. In this paper, we investigate principal methodologies, in-context learning and data generation, for few-shot relation extraction via GPT-3.5 through exhaustive experiments. To enhance few-shot performance, we further propose task-related instructions and schema-constrained data generation. We observe that in-context learning can achieve performance on par with previous prompt learning approaches, and data generation with the large language model can boost previous solutions to obtain new state-of-the-art few-shot results on four widely-studied relation extraction datasets. We hope our work can inspire future research for the capabilities of large language models in few-shot relation extraction. Code is available in \url{https://github.com/zjunlp/DeepKE/tree/main/example/llm.
PDF Work in progress

点此查看论文截图

Discern and Answer: Mitigating the Impact of Misinformation in Retrieval-Augmented Models with Discriminators

Authors:Giwon Hong, Jeonghwan Kim, Junmo Kang, Sung-Hyon Myaeng, Joyce Jiyoung Whang

Most existing retrieval-augmented language models (LMs) for question answering assume all retrieved information is factually correct. In this work, we study a more realistic scenario in which retrieved documents may contain misinformation, causing conflicts among them. We observe that the existing models are highly brittle to such information in both fine-tuning and in-context few-shot learning settings. We propose approaches to make retrieval-augmented LMs robust to misinformation by explicitly fine-tuning a discriminator or prompting to elicit discrimination capability in GPT-3. Our empirical results on open-domain question answering show that these approaches significantly improve LMs’ robustness to knowledge conflicts. We also provide our findings on interleaving the fine-tuned model’s decision with the in-context learning process, paving a new path to leverage the best of both worlds.
PDF 8 pages, 4 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录