2023-04-26 更新
Spectral normalized dual contrastive regularization for image-to-image translation
Authors:Chen Zhao, Wei-Ling Cai, Zheng Yuan
Existing image-to-image(I2I) translation methods achieve state-of-the-art performance by incorporating the patch-wise contrastive learning into Generative Adversarial Networks. However, patch-wise contrastive learning only focuses on the local content similarity but neglects the global structure constraint, which affects the quality of the generated images. In this paper, we propose a new unpaired I2I translation framework based on dual contrastive regularization and spectral normalization, namely SN-DCR. To maintain consistency of the global structure and texture, we design the dual contrastive regularization using different feature spaces respectively. In order to improve the global structure information of the generated images, we formulate a semantically contrastive loss to make the global semantic structure of the generated images similar to the real images from the target domain in the semantic feature space. We use Gram Matrices to extract the style of texture from images. Similarly, we design style contrastive loss to improve the global texture information of the generated images. Moreover, to enhance the stability of model, we employ the spectral normalized convolutional network in the design of our generator. We conduct the comprehensive experiments to evaluate the effectiveness of SN-DCR, and the results prove that our method achieves SOTA in multiple tasks.
PDF
点此查看论文截图
D2NT: A High-Performing Depth-to-Normal Translator
Authors:Yi Feng, Bohuan Xue, Ming Liu, Qijun Chen, Rui Fan
Surface normal holds significant importance in visual environmental perception, serving as a source of rich geometric information. However, the state-of-the-art (SoTA) surface normal estimators (SNEs) generally suffer from an unsatisfactory trade-off between efficiency and accuracy. To resolve this dilemma, this paper first presents a superfast depth-to-normal translator (D2NT), which can directly translate depth images into surface normal maps without calculating 3D coordinates. We then propose a discontinuity-aware gradient (DAG) filter, which adaptively generates gradient convolution kernels to improve depth gradient estimation. Finally, we propose a surface normal refinement module that can easily be integrated into any depth-to-normal SNEs, substantially improving the surface normal estimation accuracy. Our proposed algorithm demonstrates the best accuracy among all other existing real-time SNEs and achieves the SoTA trade-off between efficiency and accuracy.
PDF Accepted to ICRA 2023. The source code, demo video, and supplement are publicly available at mias.group/D2NT
点此查看论文截图
Multi-crop Contrastive Learning for Unsupervised Image-to-Image Translation
Authors:Chen Zhao, Wei-Ling Cai, Zheng Yuan, Cheng-Wei Hu
Recently, image-to-image translation methods based on contrastive learning achieved state-of-the-art results in many tasks. However, the negatives are sampled from the input feature spaces in the previous work, which makes the negatives lack diversity. Moreover, in the latent space of the embedings,the previous methods ignore domain consistency between the generated image and the real images of target domain. In this paper, we propose a novel contrastive learning framework for unpaired image-to-image translation, called MCCUT. We utilize the multi-crop views to generate the negatives via the center-crop and the random-crop, which can improve the diversity of negatives and meanwhile increase the quality of negatives. To constrain the embedings in the deep feature space,, we formulate a new domain consistency loss function, which encourages the generated images to be close to the real images in the embedding space of same domain. Furthermore, we present a dual coordinate channel attention network by embedding positional information into SENet, which called DCSE module. We employ the DCSE module in the design of generator, which makes the generator pays more attention to channels with greater weight. In many image-to-image translation tasks, our method achieves state-of-the-art results, and the advantages of our method have been proved through extensive comparison experiments and ablation research.
PDF