Few-Shot


2023-04-26 更新

Task-Adaptive Pseudo Labeling for Transductive Meta-Learning

Authors:Sanghyuk Lee, Seunghyun Lee, Byung Cheol Song

Meta-learning performs adaptation through a limited amount of support set, which may cause a sample bias problem. To solve this problem, transductive meta-learning is getting more and more attention, going beyond the conventional inductive learning perspective. This paper proposes so-called task-adaptive pseudo labeling for transductive meta-learning. Specifically, pseudo labels for unlabeled query sets are generated from labeled support sets through label propagation. Pseudo labels enable to adopt the supervised setting as it is and also use the unlabeled query set in the adaptation process. As a result, the proposed method is able to deal with more examples in the adaptation process than inductive ones, which can result in better classification performance of the model. Note that the proposed method is the first approach of applying task adaptation to pseudo labeling. Experiments show that the proposed method outperforms the state-of-the-art (SOTA) technique in 5-way 1-shot few-shot classification.
PDF

点此查看论文截图

Semantic-Aware Graph Matching Mechanism for Multi-Label Image Recognition

Authors:Yanan Wu, Songhe Feng, Yang Wang

Multi-label image recognition aims to predict a set of labels that present in an image. The key to deal with such problem is to mine the associations between image contents and labels, and further obtain the correct assignments between images and their labels. In this paper, we treat each image as a bag of instances, and formulate the task of multi-label image recognition as an instance-label matching selection problem. To model such problem, we propose an innovative Semantic-aware Graph Matching framework for Multi-Label image recognition (ML-SGM), in which Graph Matching mechanism is introduced owing to its good performance of excavating the instance and label relationship. The framework explicitly establishes category correlations and instance-label correspondences by modeling the relation among content-aware (instance) and semantic-aware (label) category representations, to facilitate multi-label image understanding and reduce the dependency of large amounts of training samples for each category. Specifically, we first construct an instance spatial graph and a label semantic graph respectively and then incorporate them into a constructed assignment graph by connecting each instance to all labels. Subsequently, the graph network block is adopted to aggregate and update all nodes and edges state on the assignment graph to form structured representations for each instance and label. Our network finally derives a prediction score for each instance-label correspondence and optimizes such correspondence with a weighted cross-entropy loss. Empirical results conducted on generic multi-label image recognition demonstrate the superiority of our proposed method. Moreover, the proposed method also shows advantages in multi-label recognition with partial labels and multi-label few-shot learning, as well as outperforms current state-of-the-art methods with a clear margin.
PDF Accepted by IEEE Transactions on Circuits and Systems for Video Technology (2023). arXiv admin note: text overlap with arXiv:2104.14762

点此查看论文截图

Transductive Few-shot Learning with Prototype-based Label Propagation by Iterative Graph Refinement

Authors:Hao Zhu, Piotr Koniusz

Few-shot learning (FSL) is popular due to its ability to adapt to novel classes. Compared with inductive few-shot learning, transductive models typically perform better as they leverage all samples of the query set. The two existing classes of methods, prototype-based and graph-based, have the disadvantages of inaccurate prototype estimation and sub-optimal graph construction with kernel functions, respectively. In this paper, we propose a novel prototype-based label propagation to solve these issues. Specifically, our graph construction is based on the relation between prototypes and samples rather than between samples. As prototypes are being updated, the graph changes. We also estimate the label of each prototype instead of considering a prototype be the class centre. On mini-ImageNet, tiered-ImageNet, CIFAR-FS and CUB datasets, we show the proposed method outperforms other state-of-the-art methods in transductive FSL and semi-supervised FSL when some unlabeled data accompanies the novel few-shot task.
PDF This paper is published at CVPR 2023

点此查看论文截图

Master: Meta Style Transformer for Controllable Zero-Shot and Few-Shot Artistic Style Transfer

Authors:Hao Tang, Songhua Liu, Tianwei Lin, Shaoli Huang, Fu Li, Dongliang He, Xinchao Wang

Transformer-based models achieve favorable performance in artistic style transfer recently thanks to its global receptive field and powerful multi-head/layer attention operations. Nevertheless, the over-paramerized multi-layer structure increases parameters significantly and thus presents a heavy burden for training. Moreover, for the task of style transfer, vanilla Transformer that fuses content and style features by residual connections is prone to content-wise distortion. In this paper, we devise a novel Transformer model termed as \emph{Master} specifically for style transfer. On the one hand, in the proposed model, different Transformer layers share a common group of parameters, which (1) reduces the total number of parameters, (2) leads to more robust training convergence, and (3) is readily to control the degree of stylization via tuning the number of stacked layers freely during inference. On the other hand, different from the vanilla version, we adopt a learnable scaling operation on content features before content-style feature interaction, which better preserves the original similarity between a pair of content features while ensuring the stylization quality. We also propose a novel meta learning scheme for the proposed model so that it can not only work in the typical setting of arbitrary style transfer, but also adaptable to the few-shot setting, by only fine-tuning the Transformer encoder layer in the few-shot stage for one specific style. Text-guided few-shot style transfer is firstly achieved with the proposed framework. Extensive experiments demonstrate the superiority of Master under both zero-shot and few-shot style transfer settings.
PDF CVPR 2023

点此查看论文截图

Few-shot Class-incremental Pill Recognition

Authors:Jinghua Zhang, Li Liu, Kai Gao, Dewen Hu

The automatic pill recognition system is of great significance in improving the efficiency of the hospital, helping people with visual impairment, and avoiding cross-infection. However, most existing pill recognition systems based on deep learning can merely perform pill classification on the learned pill categories with sufficient training data. In practice, the expensive cost of data annotation and the continuously increasing categories of new pills make it meaningful to develop a few-shot class-incremental pill recognition system. In this paper, we develop the first few-shot class-incremental pill recognition system, which adopts decoupled learning strategy of representations and classifiers. In learning representations, we propose the novel Center-Triplet loss function, which can promote intra-class compactness and inter-class separability. In learning classifiers, we propose a specialized pseudo pill image construction strategy to train the Graph Attention Network to obtain the adaptation model. Moreover, we construct two new pill image datasets for few-shot class-incremental learning. The experimental results show that our framework outperforms the state-of-the-art methods.
PDF

点此查看论文截图

GRIG: Few-Shot Generative Residual Image Inpainting

Authors:Wanglong Lu, Xianta Jiang, Xiaogang Jin, Yong-Liang Yang, Minglun Gong, Tao Wang, Kaijie Shi, Hanli Zhao

Image inpainting is the task of filling in missing or masked region of an image with semantically meaningful contents. Recent methods have shown significant improvement in dealing with large-scale missing regions. However, these methods usually require large training datasets to achieve satisfactory results and there has been limited research into training these models on a small number of samples. To address this, we present a novel few-shot generative residual image inpainting method that produces high-quality inpainting results. The core idea is to propose an iterative residual reasoning method that incorporates Convolutional Neural Networks (CNNs) for feature extraction and Transformers for global reasoning within generative adversarial networks, along with image-level and patch-level discriminators. We also propose a novel forgery-patch adversarial training strategy to create faithful textures and detailed appearances. Extensive evaluations show that our method outperforms previous methods on the few-shot image inpainting task, both quantitatively and qualitatively.
PDF There are 12 pages and 10 figures in this paper

点此查看论文截图

Meta-tuning Loss Functions and Data Augmentation for Few-shot Object Detection

Authors:Berkan Demirel, Orhun Buğra Baran, Ramazan Gokberk Cinbis

Few-shot object detection, the problem of modelling novel object detection categories with few training instances, is an emerging topic in the area of few-shot learning and object detection. Contemporary techniques can be divided into two groups: fine-tuning based and meta-learning based approaches. While meta-learning approaches aim to learn dedicated meta-models for mapping samples to novel class models, fine-tuning approaches tackle few-shot detection in a simpler manner, by adapting the detection model to novel classes through gradient based optimization. Despite their simplicity, fine-tuning based approaches typically yield competitive detection results. Based on this observation, we focus on the role of loss functions and augmentations as the force driving the fine-tuning process, and propose to tune their dynamics through meta-learning principles. The proposed training scheme, therefore, allows learning inductive biases that can boost few-shot detection, while keeping the advantages of fine-tuning based approaches. In addition, the proposed approach yields interpretable loss functions, as opposed to highly parametric and complex few-shot meta-models. The experimental results highlight the merits of the proposed scheme, with significant improvements over the strong fine-tuning based few-shot detection baselines on benchmark Pascal VOC and MS-COCO datasets, in terms of both standard and generalized few-shot performance metrics.
PDF To appear at IEEE/CVF CVPR 2023

点此查看论文截图

Hint-Aug: Drawing Hints from Foundation Vision Transformers Towards Boosted Few-Shot Parameter-Efficient Tuning

Authors:Zhongzhi Yu, Shang Wu, Yonggan Fu, Shunyao Zhang, Yingyan, Lin

Despite the growing demand for tuning foundation vision transformers (FViTs) on downstream tasks, fully unleashing FViTs’ potential under data-limited scenarios (e.g., few-shot tuning) remains a challenge due to FViTs’ data-hungry nature. Common data augmentation techniques fall short in this context due to the limited features contained in the few-shot tuning data. To tackle this challenge, we first identify an opportunity for FViTs in few-shot tuning: pretrained FViTs themselves have already learned highly representative features from large-scale pretraining data, which are fully preserved during widely used parameter-efficient tuning. We thus hypothesize that leveraging those learned features to augment the tuning data can boost the effectiveness of few-shot FViT tuning. To this end, we propose a framework called Hint-based Data Augmentation (Hint-Aug), which aims to boost FViT in few-shot tuning by augmenting the over-fitted parts of tuning samples with the learned features of pretrained FViTs. Specifically, Hint-Aug integrates two key enablers: (1) an Attentive Over-fitting Detector (AOD) to detect over-confident patches of foundation ViTs for potentially alleviating their over-fitting on the few-shot tuning data and (2) a Confusion-based Feature Infusion (CFI) module to infuse easy-to-confuse features from the pretrained FViTs with the over-confident patches detected by the above AOD in order to enhance the feature diversity during tuning. Extensive experiments and ablation studies on five datasets and three parameter-efficient tuning techniques consistently validate Hint-Aug’s effectiveness: 0.04% ~ 32.91% higher accuracy over the state-of-the-art (SOTA) data augmentation method under various low-shot settings. For example, on the Pet dataset, Hint-Aug achieves a 2.22% higher accuracy with 50% less training data over SOTA data augmentation methods.
PDF

点此查看论文截图

CitePrompt: Using Prompts to Identify Citation Intent in Scientific Papers

Authors:Avishek Lahiri, Debarshi Kumar Sanyal, Imon Mukherjee

Citations in scientific papers not only help us trace the intellectual lineage but also are a useful indicator of the scientific significance of the work. Citation intents prove beneficial as they specify the role of the citation in a given context. In this paper, we present CitePrompt, a framework which uses the hitherto unexplored approach of prompt-based learning for citation intent classification. We argue that with the proper choice of the pretrained language model, the prompt template, and the prompt verbalizer, we can not only get results that are better than or comparable to those obtained with the state-of-the-art methods but also do it with much less exterior information about the scientific document. We report state-of-the-art results on the ACL-ARC dataset, and also show significant improvement on the SciCite dataset over all baseline models except one. As suitably large labelled datasets for citation intent classification can be quite hard to find, in a first, we propose the conversion of this task to the few-shot and zero-shot settings. For the ACL-ARC dataset, we report a 53.86% F1 score for the zero-shot setting, which improves to 63.61% and 66.99% for the 5-shot and 10-shot settings, respectively.
PDF Selected for publication at ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录