Diffusion Models


2023-04-26 更新

LaMD: Latent Motion Diffusion for Video Generation

Authors:Yaosi Hu, Zhenzhong Chen, Chong Luo

Generating coherent and natural movement is the key challenge in video generation. This research proposes to condense video generation into a problem of motion generation, to improve the expressiveness of motion and make video generation more manageable. This can be achieved by breaking down the video generation process into latent motion generation and video reconstruction. We present a latent motion diffusion (LaMD) framework, which consists of a motion-decomposed video autoencoder and a diffusion-based motion generator, to implement this idea. Through careful design, the motion-decomposed video autoencoder can compress patterns in movement into a concise latent motion representation. Meanwhile, the diffusion-based motion generator is able to efficiently generate realistic motion on a continuous latent space under multi-modal conditions, at a cost that is similar to that of image diffusion models. Results show that LaMD generates high-quality videos with a wide range of motions, from stochastic dynamics to highly controllable movements. It achieves new state-of-the-art performance on benchmark datasets, including BAIR, Landscape and CATER-GENs, for Image-to-Video (I2V) and Text-Image-to-Video (TI2V) generation. The source code of LaMD will be made available soon.
PDF

点此查看论文截图

DiffVoice: Text-to-Speech with Latent Diffusion

Authors:Zhijun Liu, Yiwei Guo, Kai Yu

In this work, we present DiffVoice, a novel text-to-speech model based on latent diffusion. We propose to first encode speech signals into a phoneme-rate latent representation with a variational autoencoder enhanced by adversarial training, and then jointly model the duration and the latent representation with a diffusion model. Subjective evaluations on LJSpeech and LibriTTS datasets demonstrate that our method beats the best publicly available systems in naturalness. By adopting recent generative inverse problem solving algorithms for diffusion models, DiffVoice achieves the state-of-the-art performance in text-based speech editing, and zero-shot adaptation.
PDF Accepted to ICASSP2023

点此查看论文截图

Customized Load Profiles Synthesis for Electricity Customers Based on Conditional Diffusion Models

Authors:Zhenyi Wang, Hongcai Zhang

Customers’ load profiles are critical resources to support data analytics applications in modern power systems. However, there are usually insufficient historical load profiles for data analysis, due to the collection cost and data privacy issues. To address such data shortage problems, load profiles synthesis is an effective technique that provides synthetic training data for customers to build high-performance data-driven models. Nonetheless, it is still challenging to synthesize high-quality load profiles for each customer using generation models trained by the respective customer’s data owing to the high heterogeneity of customer load. In this paper, we propose a novel customized load profiles synthesis method based on conditional diffusion models for heterogeneous customers. Specifically, we first convert the customized synthesis into a conditional data generation issue. We then extend traditional diffusion models to conditional diffusion models to realize conditional data generation, which can synthesize exclusive load profiles for each customer according to the customer’s load characteristics and application demands. In addition, to implement conditional diffusion models, we design a noise estimation model with stacked residual layers, which improves the generation performance by using skip connections. The attention mechanism is also utilized to better extract the complex temporal dependency of load profiles. Finally, numerical case studies based on a public dataset are conducted to validate the effectiveness and superiority of the proposed method.
PDF

点此查看论文截图

RenderDiffusion: Text Generation as Image Generation

Authors:Junyi Li, Wayne Xin Zhao, Jian-Yun Nie, Ji-Rong Wen

Diffusion models have become a new generative paradigm for text generation. Considering the discrete categorical nature of text, in this paper, we propose \textsc{RenderDiffusion}, a novel diffusion approach for text generation via text-guided image generation. Our key idea is to render the target text as a \emph{glyph image} containing visual language content. In this way, conditional text generation can be cast as a glyph image generation task, and it is then natural to apply continuous diffusion models to discrete texts. Specially, we utilize a cascaded architecture (\ie a base and a super-resolution diffusion model) to generate high-fidelity glyph images, conditioned on the input text. Furthermore, we design a text grounding module to transform and refine the visual language content from generated glyph images into the final texts. In experiments over four conditional text generation tasks and two classes of metrics (\ie quality and diversity), \textsc{RenderDiffusion} can achieve comparable or even better results than several baselines, including pretrained language models. Our model also makes significant improvements compared to the recent diffusion model.
PDF working in progress

点此查看论文截图

Patch Diffusion: Faster and More Data-Efficient Training of Diffusion Models

Authors:Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He, Zhangyang Wang, Weizhu Chen, Mingyuan Zhou

Diffusion models are powerful, but they require a lot of time and data to train. We propose Patch Diffusion, a generic patch-wise training framework, to significantly reduce the training time costs while improving data efficiency, which thus helps democratize diffusion model training to broader users. At the core of our innovations is a new conditional score function at the patch level, where the patch location in the original image is included as additional coordinate channels, while the patch size is randomized and diversified throughout training to encode the cross-region dependency at multiple scales. Sampling with our method is as easy as in the original diffusion model. Through Patch Diffusion, we could achieve $\mathbf{\ge 2\times}$ faster training, while maintaining comparable or better generation quality. Patch Diffusion meanwhile improves the performance of diffusion models trained on relatively small datasets, $e.g.$, as few as 5,000 images to train from scratch. We achieve state-of-the-art FID scores 1.77 on CelebA-64$\times$64 and 1.93 on AFHQv2-Wild-64$\times$64. We will share our code and pre-trained models soon.
PDF

点此查看论文截图

Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning

Authors:Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, Jun Zhu

Guided sampling is a vital approach for applying diffusion models in real-world tasks that embeds human-defined guidance during the sampling procedure. This paper considers a general setting where the guidance is defined by an (unnormalized) energy function. The main challenge for this setting is that the intermediate guidance during the diffusion sampling procedure, which is jointly defined by the sampling distribution and the energy function, is unknown and is hard to estimate. To address this challenge, we propose an exact formulation of the intermediate guidance as well as a novel training objective named contrastive energy prediction (CEP) to learn the exact guidance. Our method is guaranteed to converge to the exact guidance under unlimited model capacity and data samples, while previous methods can not. We demonstrate the effectiveness of our method by applying it to offline reinforcement learning (RL). Extensive experiments on D4RL benchmarks demonstrate that our method outperforms existing state-of-the-art algorithms. We also provide some examples of applying CEP for image synthesis to demonstrate the scalability of CEP on high-dimensional data.
PDF Accepted at ICML 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录