GAN


2023-04-21 更新

Frequency Regularization: Restricting Information Redundancy of Convolutional Neural Networks

Authors:Chenqiu Zhao, Guanfang Dong, Shupei Zhang, Zijie Tan, Anup Basu

Convolutional neural networks have demonstrated impressive results in many computer vision tasks. However, the increasing size of these networks raises concerns about the information overload resulting from the large number of network parameters. In this paper, we propose Frequency Regularization to restrict the non-zero elements of the network parameters in frequency domain. The proposed approach operates at the tensor level, and can be applied to almost all network architectures. Specifically, the tensors of parameters are maintained in the frequency domain, where high frequency components can be eliminated by zigzag setting tensor elements to zero. Then, the inverse discrete cosine transform (IDCT) is used to reconstruct the spatial tensors for matrix operations during network training. Since high frequency components of images are known to be less critical, a large proportion of these parameters can be set to zero when networks are trained with the proposed frequency regularization. Comprehensive evaluations on various state-of-the-art network architectures, including LeNet, Alexnet, VGG, Resnet, ViT, UNet, GAN, and VAE, demonstrate the effectiveness of the proposed frequency regularization. Under the condition of a very small accuracy decrease (less than 2\%), a LeNet5 with 0.4M parameters can be represented by only 776 float16 numbers(over 1100$\times$), and a UNet with 34M parameters can be represented by only 759 float16 numbers (over 80000$\times$).
PDF This work has been submitted for peer review. Copyright may be transferred without notice, after which this version may no longer be accessible

点此查看论文截图

SP-BatikGAN: An Efficient Generative Adversarial Network for Symmetric Pattern Generation

Authors: Chrystian, Wahyono

Following the contention of AI arts, our research focuses on bringing AI for all, particularly for artists, to create AI arts with limited data and settings. We are interested in geometrically symmetric pattern generation, which appears on many artworks such as Portuguese, Moroccan tiles, and Batik, a cultural heritage in Southeast Asia. Symmetric pattern generation is a complex problem, with prior research creating too-specific models for certain patterns only. We provide publicly, the first-ever 1,216 high-quality symmetric patterns straight from design files for this task. We then formulate symmetric pattern enforcement (SPE) loss to leverage underlying symmetric-based structures that exist on current image distributions. Our SPE improves and accelerates training on any GAN configuration, and, with efficient attention, SP-BatikGAN compared to FastGAN, the state-of-the-art GAN for limited setting, improves the FID score from 110.11 to 90.76, an 18% decrease, and model diversity recall score from 0.047 to 0.204, a 334% increase.
PDF

点此查看论文截图

Attributing Image Generative Models using Latent Fingerprints

Authors:Guangyu Nie, Changhoon Kim, Yezhou Yang, Yi Ren

Generative models have enabled the creation of contents that are indistinguishable from those taken from the nature. Open-source development of such models raised concerns about the risks in their misuse for malicious purposes. One potential risk mitigation strategy is to attribute generative models via fingerprinting. Current fingerprinting methods exhibit significant tradeoff between robust attribution accuracy and generation quality, and also lack designing principles to improve this tradeoff. This paper investigates the use of latent semantic dimensions as fingerprints, from where we can analyze the effects of design variables, including the choice of fingerprinting dimensions, strength, and capacity, on the accuracy-quality tradeoff. Compared with previous SOTA, our method requires minimum computation and is more applicable to large-scale models. We use StyleGAN2 and the latent diffusion model to demonstrate the efficacy of our method.
PDF

点此查看论文截图

PREIM3D: 3D Consistent Precise Image Attribute Editing from a Single Image

Authors:Jianhui Li, Jianmin Li, Haoji Zhang, Shilong Liu, Zhengyi Wang, Zihao Xiao, Kaiwen Zheng, Jun Zhu

We study the 3D-aware image attribute editing problem in this paper, which has wide applications in practice. Recent methods solved the problem by training a shared encoder to map images into a 3D generator’s latent space or by per-image latent code optimization and then edited images in the latent space. Despite their promising results near the input view, they still suffer from the 3D inconsistency of produced images at large camera poses and imprecise image attribute editing, like affecting unspecified attributes during editing. For more efficient image inversion, we train a shared encoder for all images. To alleviate 3D inconsistency at large camera poses, we propose two novel methods, an alternating training scheme and a multi-view identity loss, to maintain 3D consistency and subject identity. As for imprecise image editing, we attribute the problem to the gap between the latent space of real images and that of generated images. We compare the latent space and inversion manifold of GAN models and demonstrate that editing in the inversion manifold can achieve better results in both quantitative and qualitative evaluations. Extensive experiments show that our method produces more 3D consistent images and achieves more precise image editing than previous work. Source code and pretrained models can be found on our project page: https://mybabyyh.github.io/Preim3D/
PDF 20 pages, 21 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录