2023-04-19 更新
Improved Test-Time Adaptation for Domain Generalization
Authors:Liang Chen, Yong Zhang, Yibing Song, Ying Shan, Lingqiao Liu
The main challenge in domain generalization (DG) is to handle the distribution shift problem that lies between the training and test data. Recent studies suggest that test-time training (TTT), which adapts the learned model with test data, might be a promising solution to the problem. Generally, a TTT strategy hinges its performance on two main factors: selecting an appropriate auxiliary TTT task for updating and identifying reliable parameters to update during the test phase. Both previous arts and our experiments indicate that TTT may not improve but be detrimental to the learned model if those two factors are not properly considered. This work addresses those two factors by proposing an Improved Test-Time Adaptation (ITTA) method. First, instead of heuristically defining an auxiliary objective, we propose a learnable consistency loss for the TTT task, which contains learnable parameters that can be adjusted toward better alignment between our TTT task and the main prediction task. Second, we introduce additional adaptive parameters for the trained model, and we suggest only updating the adaptive parameters during the test phase. Through extensive experiments, we show that the proposed two strategies are beneficial for the learned model (see Figure 1), and ITTA could achieve superior performance to the current state-of-the-art methods on several DG benchmarks. Code is available at https://github.com/liangchen527/ITTA.
PDF Accepted by CVPR 2023
点此查看论文截图
CoMaL: Conditional Maximum Likelihood Approach to Self-supervised Domain Adaptation in Long-tail Semantic Segmentation
Authors:Thanh-Dat Truong, Chi Nhan Duong, Pierce Helton, Ashley Dowling, Xin Li, Khoa Luu
The research in self-supervised domain adaptation in semantic segmentation has recently received considerable attention. Although GAN-based methods have become one of the most popular approaches to domain adaptation, they have suffered from some limitations. They are insufficient to model both global and local structures of a given image, especially in small regions of tail classes. Moreover, they perform bad on the tail classes containing limited number of pixels or less training samples. In order to address these issues, we present a new self-supervised domain adaptation approach to tackle long-tail semantic segmentation in this paper. Firstly, a new metric is introduced to formulate long-tail domain adaptation in the segmentation problem. Secondly, a new Conditional Maximum Likelihood (CoMaL) approach in an autoregressive framework is presented to solve the problem of long-tail domain adaptation. Although other segmentation methods work under the pixel independence assumption, the long-tailed pixel distributions in CoMaL are generally solved in the context of structural dependency, as that is more realistic. Finally, the proposed method is evaluated on popular large-scale semantic segmentation benchmarks, i.e., “SYNTHIA to Cityscapes” and “GTA to Cityscapes”, and outperforms the prior methods by a large margin in both the standard and the proposed evaluation protocols.
PDF
点此查看论文截图
Continual Domain Adaptation through Pruning-aided Domain-specific Weight Modulation
Authors:Prasanna B, Sunandini Sanyal, R. Venkatesh Babu
In this paper, we propose to develop a method to address unsupervised domain adaptation (UDA) in a practical setting of continual learning (CL). The goal is to update the model on continually changing domains while preserving domain-specific knowledge to prevent catastrophic forgetting of past-seen domains. To this end, we build a framework for preserving domain-specific features utilizing the inherent model capacity via pruning. We also perform effective inference using a novel batch-norm based metric to predict the final model parameters to be used accurately. Our approach achieves not only state-of-the-art performance but also prevents catastrophic forgetting of past domains significantly. Our code is made publicly available.
PDF CVPR CLVision Workshop 2023, For code see https://github.com/PrasannaB29/PACDA
点此查看论文截图
GeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates
Authors:Valerio Marsocci, Nicolas Gonthier, Anatol Garioud, Simone Scardapane, Clément Mallet
Land cover maps are a pivotal element in a wide range of Earth Observation (EO) applications. However, annotating large datasets to develop supervised systems for remote sensing (RS) semantic segmentation is costly and time-consuming. Unsupervised Domain Adaption (UDA) could tackle these issues by adapting a model trained on a source domain, where labels are available, to a target domain, without annotations. UDA, while gaining importance in computer vision, is still under-investigated in RS. Thus, we propose a new lightweight model, GeoMultiTaskNet, based on two contributions: a GeoMultiTask module (GeoMT), which utilizes geographical coordinates to align the source and target domains, and a Dynamic Class Sampling (DCS) strategy, to adapt the semantic segmentation loss to the frequency of classes. This approach is the first to use geographical metadata for UDA in semantic segmentation. It reaches state-of-the-art performances (47,22% mIoU), reducing at the same time the number of parameters (33M), on a subset of the FLAIR dataset, a recently proposed dataset properly shaped for RS UDA, used for the first time ever for research scopes here.
PDF
点此查看论文截图
Chain of Thought Prompt Tuning in Vision Language Models
Authors:Jiaxin Ge, Hongyin Luo, Siyuan Qian, Yulu Gan, Jie Fu, Shanghang Zhan
Language-Image Pre-training has demonstrated promising results on zero-shot and few-shot downstream tasks by prompting visual models with natural language prompts. However, most recent studies only use a single prompt for tuning, neglecting the inherent step-to-step cognitive reasoning process that humans conduct in complex task settings, for example, when processing images from unfamiliar domains. Chain of Thought is a simple and effective approximation to human reasoning process and has been proven useful for natural language processing (NLP) tasks. Based on this cognitive intuition, we believe that conducting effective reasoning is also an important problem in visual tasks, and a chain of thought could be a solution to this problem. In this work, we propose a novel chain of thought prompt tuning for vision-language modeling. Extensive experiments show that our method not only generalizes better in image classification tasks, has greater transferability beyond a single dataset, and has stronger domain generalization performance, but also performs much better in imagetext retrieval and visual question answering, which require more reasoning capabilities. We are the first to successfully adapt chain-of-thought prompting that combines visual and textual embeddings. We will release our codes
PDF
点此查看论文截图
Heterogeneous Domain Adaptation with Positive and Unlabeled Data
Authors:Junki Mori, Ryo Furukawa, Isamu Teranishi, Jun Sakuma
Heterogeneous unsupervised domain adaptation (HUDA) is the most challenging domain adaptation setting where the feature space differs between source and target domains, and the target domain has only unlabeled data. Existing HUDA methods assume that both positive and negative examples are available in the source domain, which may not be satisfied in some real applications. This paper addresses a new challenging setting called positive and unlabeled heterogeneous domain adaptation (PU-HDA), a HUDA setting where the source domain only has positives. PU-HDA can also be viewed as an extension of PU learning where the positive and unlabeled examples are sampled from different domains. A naive combination of existing HUDA and PU learning methods is ineffective in PU-HDA due to the gap in label distribution between the source and target domains. To overcome this issue, we propose a novel method, positive-adversarial domain adaptation (PADA), which can predict likely positive examples from the unlabeled target data and simultaneously align the feature spaces to reduce the distribution divergence between the whole source data and the likely positive target data. PADA achieves this by a unified adversarial training framework for learning a classifier to predict positive examples and a feature transformer to transform the target feature space to that of the source. Specifically, they are both trained to fool a common discriminator that determines whether the likely positive examples are from the target or source domain. We experimentally show that PADA outperforms several baseline methods, such as the naive combination of HUDA and PU learning.
PDF Under review
点此查看论文截图
NeRF-Loc: Visual Localization with Conditional Neural Radiance Field
Authors:Jianlin Liu, Qiang Nie, Yong Liu, Chengjie Wang
We propose a novel visual re-localization method based on direct matching between the implicit 3D descriptors and the 2D image with transformer. A conditional neural radiance field(NeRF) is chosen as the 3D scene representation in our pipeline, which supports continuous 3D descriptors generation and neural rendering. By unifying the feature matching and the scene coordinate regression to the same framework, our model learns both generalizable knowledge and scene prior respectively during two training stages. Furthermore, to improve the localization robustness when domain gap exists between training and testing phases, we propose an appearance adaptation layer to explicitly align styles between the 3D model and the query image. Experiments show that our method achieves higher localization accuracy than other learning-based approaches on multiple benchmarks. Code is available at \url{https://github.com/JenningsL/nerf-loc}.
PDF accepted by ICRA 2023
点此查看论文截图
Tailoring Domain Adaptation for Machine Translation Quality Estimation
Authors:Javad Pourmostafa Roshan Sharami, Dimitar Shterionov, Frédéric Blain, Eva Vanmassenhove, Mirella De Sisto, Chris Emmery, Pieter Spronck
While quality estimation (QE) can play an important role in the translation process, its effectiveness relies on the availability and quality of training data. For QE in particular, high-quality labeled data is often lacking due to the high-cost and effort associated with labeling such data. Aside from the data scarcity challenge, QE models should also be generalizable, i.e., they should be able to handle data from different domains, both generic and specific. To alleviate these two main issues — data scarcity and domain mismatch — this paper combines domain adaptation and data augmentation within a robust QE system. Our method is to first train a generic QE model and then fine-tune it on a specific domain while retaining generic knowledge. Our results show a significant improvement for all the language pairs investigated, better cross-lingual inference, and a superior performance in zero-shot learning scenarios as compared to state-of-the-art baselines.
PDF Accepted to EAMT 2023 (main)
点此查看论文截图
SAM Fails to Segment Anything? — SAM-Adapter: Adapting SAM in Underperformed Scenes: Camouflage, Shadow, and More
Authors:Tianrun Chen, Lanyun Zhu, Chaotao Ding, Runlong Cao, Shangzhan Zhang, Yan Wang, Zejian Li, Lingyun Sun, Papa Mao, Ying Zang
The emergence of large models, also known as foundation models, has brought significant advancements to AI research. One such model is Segment Anything (SAM), which is designed for image segmentation tasks. However, as with other foundation models, our experimental findings suggest that SAM may fail or perform poorly in certain segmentation tasks, such as shadow detection and camouflaged object detection (concealed object detection). This study first paves the way for applying the large pre-trained image segmentation model SAM to these downstream tasks, even in situations where SAM performs poorly. Rather than fine-tuning the SAM network, we propose \textbf{SAM-Adapter}, which incorporates domain-specific information or visual prompts into the segmentation network by using simple yet effective adapters. Our extensive experiments show that SAM-Adapter can significantly elevate the performance of SAM in challenging tasks and we can even outperform task-specific network models and achieve state-of-the-art performance in the task we tested: camouflaged object detection and shadow detection. We believe our work opens up opportunities for utilizing SAM in downstream tasks, with potential applications in various fields, including medical image processing, agriculture, remote sensing, and more.
PDF