2023-04-12 更新
SAR2EO: A High-resolution Image Translation Framework with Denoising Enhancement
Authors:Jun Yu, Shenshen Du, Renjie Lu, Pengwei Li, Guochen Xie, Zhongpeng Cai, Keda Lu, Qing Ling, Cong Wang, Luyu Qiu, Wei Zheng
Synthetic Aperture Radar (SAR) to electro-optical (EO) image translation is a fundamental task in remote sensing that can enrich the dataset by fusing information from different sources. Recently, many methods have been proposed to tackle this task, but they are still difficult to complete the conversion from low-resolution images to high-resolution images. Thus, we propose a framework, SAR2EO, aiming at addressing this challenge. Firstly, to generate high-quality EO images, we adopt the coarse-to-fine generator, multi-scale discriminators, and improved adversarial loss in the pix2pixHD model to increase the synthesis quality. Secondly, we introduce a denoising module to remove the noise in SAR images, which helps to suppress the noise while preserving the structural information of the images. To validate the effectiveness of the proposed framework, we conduct experiments on the dataset of the Multi-modal Aerial View Imagery Challenge (MAVIC), which consists of large-scale SAR and EO image pairs. The experimental results demonstrate the superiority of our proposed framework, and we win the first place in the MAVIC held in CVPR PBVS 2023.
PDF
点此查看论文截图
DDRF: Denoising Diffusion Model for Remote Sensing Image Fusion
Authors:ZiHan Cao, ShiQi Cao, Xiao Wu, JunMing Hou, Ran Ran, Liang-Jian Deng
Denosing diffusion model, as a generative model, has received a lot of attention in the field of image generation recently, thanks to its powerful generation capability. However, diffusion models have not yet received sufficient research in the field of image fusion. In this article, we introduce diffusion model to the image fusion field, treating the image fusion task as image-to-image translation and designing two different conditional injection modulation modules (i.e., style transfer modulation and wavelet modulation) to inject coarse-grained style information and fine-grained high-frequency and low-frequency information into the diffusion UNet, thereby generating fused images. In addition, we also discussed the residual learning and the selection of training objectives of the diffusion model in the image fusion task. Extensive experimental results based on quantitative and qualitative assessments compared with benchmarks demonstrates state-of-the-art results and good generalization performance in image fusion tasks. Finally, it is hoped that our method can inspire other works and gain insight into this field to better apply the diffusion model to image fusion tasks. Code shall be released for better reproducibility.
PDF