2023-04-11 更新
Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative Radiance Field
Authors:Leheng Li, Qing Lian, Luozhou Wang, Ningning Ma, Ying-Cong Chen
This work explores the use of 3D generative models to synthesize training data for 3D vision tasks. The key requirements of the generative models are that the generated data should be photorealistic to match the real-world scenarios, and the corresponding 3D attributes should be aligned with given sampling labels. However, we find that the recent NeRF-based 3D GANs hardly meet the above requirements due to their designed generation pipeline and the lack of explicit 3D supervision. In this work, we propose Lift3D, an inverted 2D-to-3D generation framework to achieve the data generation objectives. Lift3D has several merits compared to prior methods: (1) Unlike previous 3D GANs that the output resolution is fixed after training, Lift3D can generalize to any camera intrinsic with higher resolution and photorealistic output. (2) By lifting well-disentangled 2D GAN to 3D object NeRF, Lift3D provides explicit 3D information of generated objects, thus offering accurate 3D annotations for downstream tasks. We evaluate the effectiveness of our framework by augmenting autonomous driving datasets. Experimental results demonstrate that our data generation framework can effectively improve the performance of 3D object detectors. Project page: https://len-li.github.io/lift3d-web.
PDF CVPR 2023
点此查看论文截图
PVD-AL: Progressive Volume Distillation with Active Learning for Efficient Conversion Between Different NeRF Architectures
Authors:Shuangkang Fang, Yufeng Wang, Yi Yang, Weixin Xu, Heng Wang, Wenrui Ding, Shuchang Zhou
Neural Radiance Fields (NeRF) have been widely adopted as practical and versatile representations for 3D scenes, facilitating various downstream tasks. However, different architectures, including plain Multi-Layer Perceptron (MLP), Tensors, low-rank Tensors, Hashtables, and their compositions, have their trade-offs. For instance, Hashtables-based representations allow for faster rendering but lack clear geometric meaning, making spatial-relation-aware editing challenging. To address this limitation and maximize the potential of each architecture, we propose Progressive Volume Distillation with Active Learning (PVD-AL), a systematic distillation method that enables any-to-any conversions between different architectures. PVD-AL decomposes each structure into two parts and progressively performs distillation from shallower to deeper volume representation, leveraging effective information retrieved from the rendering process. Additionally, a Three-Levels of active learning technique provides continuous feedback during the distillation process, resulting in high-performance results. Empirical evidence is presented to validate our method on multiple benchmark datasets. For example, PVD-AL can distill an MLP-based model from a Hashtables-based model at a 10~20X faster speed and 0.8dB~2dB higher PSNR than training the NeRF model from scratch. Moreover, PVD-AL permits the fusion of diverse features among distinct structures, enabling models with multiple editing properties and providing a more efficient model to meet real-time requirements. Project website:http://sk-fun.fun/PVD-AL.
PDF Project website: http://sk-fun.fun/PVD-AL. arXiv admin note: substantial text overlap with arXiv:2211.15977
点此查看论文截图
NeRF applied to satellite imagery for surface reconstruction
Authors:Federico Semeraro, Yi Zhang, Wenying Wu, Patrick Carroll
We present Sat-NeRF, a modified implementation of the recently introduced Shadow Neural Radiance Field (S-NeRF) model. This method is able to synthesize novel views from a sparse set of satellite images of a scene, while accounting for the variation in lighting present in the pictures. The trained model can also be used to accurately estimate the surface elevation of the scene, which is often a desirable quantity for satellite observation applications. S-NeRF improves on the standard Neural Radiance Field (NeRF) method by considering the radiance as a function of the albedo and the irradiance. Both these quantities are output by fully connected neural network branches of the model, and the latter is considered as a function of the direct light from the sun and the diffuse color from the sky. The implementations were run on a dataset of satellite images, augmented using a zoom-and-crop technique. A hyperparameter study for NeRF was carried out, leading to intriguing observations on the model’s convergence. Finally, both NeRF and S-NeRF were run until 100k epochs in order to fully fit the data and produce their best possible predictions. The code related to this article can be found at https://github.gatech.edu/fsemeraro6/satnerf.
PDF
点此查看论文截图
Instance Neural Radiance Field
Authors:Benran Hu, Junkai Huang, Yichen Liu, Yu-Wing Tai, Chi-Keung Tang
This paper presents one of the first learning-based NeRF 3D instance segmentation pipelines, dubbed as Instance Neural Radiance Field, or Instance NeRF. Taking a NeRF pretrained from multi-view RGB images as input, Instance NeRF can learn 3D instance segmentation of a given scene, represented as an instance field component of the NeRF model. To this end, we adopt a 3D proposal-based mask prediction network on the sampled volumetric features from NeRF, which generates discrete 3D instance masks. The coarse 3D mask prediction is then projected to image space to match 2D segmentation masks from different views generated by existing panoptic segmentation models, which are used to supervise the training of the instance field. Notably, beyond generating consistent 2D segmentation maps from novel views, Instance NeRF can query instance information at any 3D point, which greatly enhances NeRF object segmentation and manipulation. Our method is also one of the first to achieve such results without ground-truth instance information during inference. Experimented on synthetic and real-world NeRF datasets with complex indoor scenes, Instance NeRF surpasses previous NeRF segmentation works and competitive 2D segmentation methods in segmentation performance on unseen views. See the demo video at https://youtu.be/wW9Bme73coI.
PDF