Domain Adaptation


2023-04-11 更新

MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation in 3D Object Detection

Authors:Darren Tsai, Julie Stephany Berrio, Mao Shan, Eduardo Nebot, Stewart Worrall

We introduce Multi-Source 3D (MS3D), a new self-training pipeline for unsupervised domain adaptation in 3D object detection. Despite the remarkable accuracy of 3D detectors, they often overfit to specific domain biases, leading to suboptimal performance in various sensor setups and environments. Existing methods typically focus on adapting a single detector to the target domain, overlooking the fact that different detectors possess distinct expertise on different unseen domains. MS3D leverages this by combining different pre-trained detectors from multiple source domains and incorporating temporal information to produce high-quality pseudo-labels for fine-tuning. Our proposed Kernel-Density Estimation (KDE) Box Fusion method fuses box proposals from multiple domains to obtain pseudo-labels that surpass the performance of the best source domain detectors. MS3D exhibits greater robustness to domain shifts and produces accurate pseudo-labels over greater distances, making it well-suited for high-to-low beam domain adaptation and vice versa. Our method achieved state-of-the-art performance on all evaluated datasets, and we demonstrate that the choice of pre-trained source detectors has minimal impact on the self-training result, making MS3D suitable for real-world applications.
PDF Our code is available at https://github.com/darrenjkt/MS3D

点此查看论文截图

A2J-Transformer: Anchor-to-Joint Transformer Network for 3D Interacting Hand Pose Estimation from a Single RGB Image

Authors:Changlong Jiang, Yang Xiao, Cunlin Wu, Mingyang Zhang, Jinghong Zheng, Zhiguo Cao, Joey Tianyi Zhou

3D interacting hand pose estimation from a single RGB image is a challenging task, due to serious self-occlusion and inter-occlusion towards hands, confusing similar appearance patterns between 2 hands, ill-posed joint position mapping from 2D to 3D, etc.. To address these, we propose to extend A2J-the state-of-the-art depth-based 3D single hand pose estimation method-to RGB domain under interacting hand condition. Our key idea is to equip A2J with strong local-global aware ability to well capture interacting hands’ local fine details and global articulated clues among joints jointly. To this end, A2J is evolved under Transformer’s non-local encoding-decoding framework to build A2J-Transformer. It holds 3 main advantages over A2J. First, self-attention across local anchor points is built to make them global spatial context aware to better capture joints’ articulation clues for resisting occlusion. Secondly, each anchor point is regarded as learnable query with adaptive feature learning for facilitating pattern fitting capacity, instead of having the same local representation with the others. Last but not least, anchor point locates in 3D space instead of 2D as in A2J, to leverage 3D pose prediction. Experiments on challenging InterHand 2.6M demonstrate that, A2J-Transformer can achieve state-of-the-art model-free performance (3.38mm MPJPE advancement in 2-hand case) and can also be applied to depth domain with strong generalization.
PDF CVPR 2023. The code is avaliable at https://github.com/ChanglongJiangGit/A2J-Transformer

点此查看论文截图

DATE: Domain Adaptive Product Seeker for E-commerce

Authors:Haoyuan Li, Hao Jiang, Tao Jin, Mengyan Li, Yan Chen, Zhijie Lin, Yang Zhao, Zhou Zhao

Product Retrieval (PR) and Grounding (PG), aiming to seek image and object-level products respectively according to a textual query, have attracted great interest recently for better shopping experience. Owing to the lack of relevant datasets, we collect two large-scale benchmark datasets from Taobao Mall and Live domains with about 474k and 101k image-query pairs for PR, and manually annotate the object bounding boxes in each image for PG. As annotating boxes is expensive and time-consuming, we attempt to transfer knowledge from annotated domain to unannotated for PG to achieve un-supervised Domain Adaptation (PG-DA). We propose a {\bf D}omain {\bf A}daptive Produc{\bf t} S{\bf e}eker ({\bf DATE}) framework, regarding PR and PG as Product Seeking problem at different levels, to assist the query {\bf date} the product. Concretely, we first design a semantics-aggregated feature extractor for each modality to obtain concentrated and comprehensive features for following efficient retrieval and fine-grained grounding tasks. Then, we present two cooperative seekers to simultaneously search the image for PR and localize the product for PG. Besides, we devise a domain aligner for PG-DA to alleviate uni-modal marginal and multi-modal conditional distribution shift between source and target domains, and design a pseudo box generator to dynamically select reliable instances and generate bounding boxes for further knowledge transfer. Extensive experiments show that our DATE achieves satisfactory performance in fully-supervised PR, PG and un-supervised PG-DA. Our desensitized datasets will be publicly available here\footnote{\url{https://github.com/Taobao-live/Product-Seeking}}.
PDF This paper was accepted by CVPR 2023

点此查看论文截图

Embarrassingly Simple MixUp for Time-series

Authors:Karan Aggarwal, Jaideep Srivastava

Labeling time series data is an expensive task because of domain expertise and dynamic nature of the data. Hence, we often have to deal with limited labeled data settings. Data augmentation techniques have been successfully deployed in domains like computer vision to exploit the use of existing labeled data. We adapt one of the most commonly used technique called MixUp, in the time series domain. Our proposed, MixUp++ and LatentMixUp++, use simple modifications to perform interpolation in raw time series and classification model’s latent space, respectively. We also extend these methods with semi-supervised learning to exploit unlabeled data. We observe significant improvements of 1\% - 15\% on time series classification on two public datasets, for both low labeled data as well as high labeled data regimes, with LatentMixUp++.
PDF

点此查看论文截图

Improved Test-Time Adaptation for Domain Generalization

Authors:Liang Chen, Yong Zhang, Yibing Song, Ying Shan, Lingqiao Liu

The main challenge in domain generalization (DG) is to handle the distribution shift problem that lies between the training and test data. Recent studies suggest that test-time training (TTT), which adapts the learned model with test data, might be a promising solution to the problem. Generally, a TTT strategy hinges its performance on two main factors: selecting an appropriate auxiliary TTT task for updating and identifying reliable parameters to update during the test phase. Both previous arts and our experiments indicate that TTT may not improve but be detrimental to the learned model if those two factors are not properly considered. This work addresses those two factors by proposing an Improved Test-Time Adaptation (ITTA) method. First, instead of heuristically defining an auxiliary objective, we propose a learnable consistency loss for the TTT task, which contains learnable parameters that can be adjusted toward better alignment between our TTT task and the main prediction task. Second, we introduce additional adaptive parameters for the trained model, and we suggest only updating the adaptive parameters during the test phase. Through extensive experiments, we show that the proposed two strategies are beneficial for the learned model (see Figure 1), and ITTA could achieve superior performance to the current state-of-the-art methods on several DG benchmarks. Code is available at https://github.com/liangchen527/ITTA.
PDF Accepted by CVPR 2023

点此查看论文截图

Two Steps Forward and One Behind: Rethinking Time Series Forecasting with Deep Learning

Authors:Riccardo Ughi, Eugenio Lomurno, Matteo Matteucci

The Transformer is a highly successful deep learning model that has revolutionised the world of artificial neural networks, first in natural language processing and later in computer vision. This model is based on the attention mechanism and is able to capture complex semantic relationships between a variety of patterns present in the input data. Precisely because of these characteristics, the Transformer has recently been exploited for time series forecasting problems, assuming its natural adaptability to the domain of continuous numerical series. Despite the acclaimed results in the literature, some works have raised doubts about the robustness of this approach. In this paper, we further investigate the effectiveness of Transformer-based models applied to the domain of time series forecasting, demonstrate their limitations, and propose a set of alternative models that are better performing and significantly less complex. In particular, we empirically show how simplifying this forecasting model almost always leads to an improvement, reaching the state of the art among Transformer-based architectures. We also propose shallow models without the attention mechanism, which compete with the overall state of the art in long time series forecasting, and demonstrate their ability to accurately predict extremely long windows. We show how it is always necessary to use a simple baseline to verify the effectiveness of one’s models, and finally we conclude the paper with a reflection on recent research paths and the desire to follow trends and apply the latest model even where it may not be necessary.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录