Diffusion Models


2023-04-07 更新

DITTO-NeRF: Diffusion-based Iterative Text To Omni-directional 3D Model

Authors:Hoigi Seo, Hayeon Kim, Gwanghyun Kim, Se Young Chun

The increasing demand for high-quality 3D content creation has motivated the development of automated methods for creating 3D object models from a single image and/or from a text prompt. However, the reconstructed 3D objects using state-of-the-art image-to-3D methods still exhibit low correspondence to the given image and low multi-view consistency. Recent state-of-the-art text-to-3D methods are also limited, yielding 3D samples with low diversity per prompt with long synthesis time. To address these challenges, we propose DITTO-NeRF, a novel pipeline to generate a high-quality 3D NeRF model from a text prompt or a single image. Our DITTO-NeRF consists of constructing high-quality partial 3D object for limited in-boundary (IB) angles using the given or text-generated 2D image from the frontal view and then iteratively reconstructing the remaining 3D NeRF using inpainting latent diffusion model. We propose progressive 3D object reconstruction schemes in terms of scales (low to high resolution), angles (IB angles initially to outer-boundary (OB) later), and masks (object to background boundary) in our DITTO-NeRF so that high-quality information on IB can be propagated into OB. Our DITTO-NeRF outperforms state-of-the-art methods in terms of fidelity and diversity qualitatively and quantitatively with much faster training times than prior arts on image/text-to-3D such as DreamFusion, and NeuralLift-360.
PDF Project page: https://janeyeon.github.io/ditto-nerf/

点此查看论文截图

Zero-shot Generative Model Adaptation via Image-specific Prompt Learning

Authors:Jiayi Guo, Chaofei Wang, You Wu, Eric Zhang, Kai Wang, Xingqian Xu, Shiji Song, Humphrey Shi, Gao Huang

Recently, CLIP-guided image synthesis has shown appealing performance on adapting a pre-trained source-domain generator to an unseen target domain. It does not require any target-domain samples but only the textual domain labels. The training is highly efficient, e.g., a few minutes. However, existing methods still have some limitations in the quality of generated images and may suffer from the mode collapse issue. A key reason is that a fixed adaptation direction is applied for all cross-domain image pairs, which leads to identical supervision signals. To address this issue, we propose an Image-specific Prompt Learning (IPL) method, which learns specific prompt vectors for each source-domain image. This produces a more precise adaptation direction for every cross-domain image pair, endowing the target-domain generator with greatly enhanced flexibility. Qualitative and quantitative evaluations on various domains demonstrate that IPL effectively improves the quality and diversity of synthesized images and alleviates the mode collapse. Moreover, IPL is independent of the structure of the generative model, such as generative adversarial networks or diffusion models. Code is available at https://github.com/Picsart-AI-Research/IPL-Zero-Shot-Generative-Model-Adaptation.
PDF Accepted by CVPR 2023. GitHub: https://github.com/Picsart-AI-Research/IPL-Zero-Shot-Generative-Model-Adaptation

点此查看论文截图

SketchFFusion: Sketch-guided image editing with diffusion model

Authors:Weihang Mao, Bo Han, Zihao Wang

Sketch-guided image editing aims to achieve local fine-tuning of the image based on the sketch information provided by the user, while maintaining the original status of the unedited areas. Due to the high cost of acquiring human sketches, previous works mostly relied on edge maps as a substitute for sketches, but sketches possess more rich structural information. In this paper, we propose a sketch generation scheme that can preserve the main contours of an image and closely adhere to the actual sketch style drawn by the user. Simultaneously, current image editing methods often face challenges such as image distortion, training cost, and loss of fine details in the sketch. To address these limitations, We propose a conditional diffusion model (SketchFFusion) based on the sketch structure vector. We evaluate the generative performance of our model and demonstrate that it outperforms existing methods.
PDF

点此查看论文截图

Diffusion Models as Masked Autoencoders

Authors:Chen Wei, Karttikeya Mangalam, Po-Yao Huang, Yanghao Li, Haoqi Fan, Hu Xu, Huiyu Wang, Cihang Xie, Alan Yuille, Christoph Feichtenhofer

There has been a longstanding belief that generation can facilitate a true understanding of visual data. In line with this, we revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models. While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE). Our approach is capable of (i) serving as a strong initialization for downstream recognition tasks, (ii) conducting high-quality image inpainting, and (iii) being effortlessly extended to video where it produces state-of-the-art classification accuracy. We further perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
PDF Tech report. Project page: https://weichen582.github.io/diffmae.html

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录