2023-04-06 更新
A Unified Contrastive Transfer Framework with Propagation Structure for Boosting Low-Resource Rumor Detection
Authors:Hongzhan Lin, Jing Ma, Ruichao Yang, Zhiwei Yang, Mingfei Cheng
The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday’s news. However, due to a lack of training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced. More specifically, we first represent rumor circulated on social media as an undirected topology, and then train a Multi-scale Graph Convolutional Network via a unified contrastive paradigm. Our model explicitly breaks the barriers of the domain and/or language issues, via language alignment and a novel domain-adaptive contrastive learning mechanism. To enhance the representation learning from a small set of target events, we reveal that rumor-indicative signal is closely correlated with the uniformity of the distribution of these events. We design a target-wise contrastive training mechanism with three data augmentation strategies, capable of unifying the representations by distinguishing target events. Extensive experiments conducted on four low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
PDF A significant extension of the first contrastive approach for low-resource rumor detection (arXiv:2204.08143)
点此查看论文截图
Algorithm-Dependent Bounds for Representation Learning of Multi-Source Domain Adaptation
Authors:Qi Chen, Mario Marchand
We use information-theoretic tools to derive a novel analysis of Multi-source Domain Adaptation (MDA) from the representation learning perspective. Concretely, we study joint distribution alignment for supervised MDA with few target labels and unsupervised MDA with pseudo labels, where the latter is relatively hard and less commonly studied. We further provide algorithm-dependent generalization bounds for these two settings, where the generalization is characterized by the mutual information between the parameters and the data. Then we propose a novel deep MDA algorithm, implicitly addressing the target shift through joint alignment. Finally, the mutual information bounds are extended to this algorithm providing a non-vacuous gradient-norm estimation. The proposed algorithm has comparable performance to the state-of-the-art on target-shifted MDA benchmark with improved memory efficiency.
PDF
点此查看论文截图
FREDOM: Fairness Domain Adaptation Approach to Semantic Scene Understanding
Authors:Thanh-Dat Truong, Ngan Le, Bhiksha Raj, Jackson Cothren, Khoa Luu
Although Domain Adaptation in Semantic Scene Segmentation has shown impressive improvement in recent years, the fairness concerns in the domain adaptation have yet to be well defined and addressed. In addition, fairness is one of the most critical aspects when deploying the segmentation models into human-related real-world applications, e.g., autonomous driving, as any unfair predictions could influence human safety. In this paper, we propose a novel Fairness Domain Adaptation (FREDOM) approach to semantic scene segmentation. In particular, from the proposed formulated fairness objective, a new adaptation framework will be introduced based on the fair treatment of class distributions. Moreover, to generally model the context of structural dependency, a new conditional structural constraint is introduced to impose the consistency of predicted segmentation. Thanks to the proposed Conditional Structure Network, the self-attention mechanism has sufficiently modeled the structural information of segmentation. Through the ablation studies, the proposed method has shown the performance improvement of the segmentation models and promoted fairness in the model predictions. The experimental results on the two standard benchmarks, i.e., SYNTHIA $\to$ Cityscapes and GTA5 $\to$ Cityscapes, have shown that our method achieved State-of-the-Art (SOTA) performance.
PDF Accepted to CVPR’23
点此查看论文截图
DiGA: Distil to Generalize and then Adapt for Domain Adaptive Semantic Segmentation
Authors:Fengyi Shen, Akhil Gurram, Ziyuan Liu, He Wang, Alois Knoll
Domain adaptive semantic segmentation methods commonly utilize stage-wise training, consisting of a warm-up and a self-training stage. However, this popular approach still faces several challenges in each stage: for warm-up, the widely adopted adversarial training often results in limited performance gain, due to blind feature alignment; for self-training, finding proper categorical thresholds is very tricky. To alleviate these issues, we first propose to replace the adversarial training in the warm-up stage by a novel symmetric knowledge distillation module that only accesses the source domain data and makes the model domain generalizable. Surprisingly, this domain generalizable warm-up model brings substantial performance improvement, which can be further amplified via our proposed cross-domain mixture data augmentation technique. Then, for the self-training stage, we propose a threshold-free dynamic pseudo-label selection mechanism to ease the aforementioned threshold problem and make the model better adapted to the target domain. Extensive experiments demonstrate that our framework achieves remarkable and consistent improvements compared to the prior arts on popular benchmarks. Codes and models are available at https://github.com/fy-vision/DiGA
PDF CVPR2023
点此查看论文截图
MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation in 3D Object Detection
Authors:Darren Tsai, Julie Stephany Berrio, Mao Shan, Eduardo Nebot, Stewart Worrall
We introduce Multi-Source 3D (MS3D), a new self-training pipeline for unsupervised domain adaptation in 3D object detection. Despite the remarkable accuracy of 3D detectors, they often overfit to specific domain biases, leading to suboptimal performance in various sensor setups and environments. Existing methods typically focus on adapting a single detector to the target domain, overlooking the fact that different detectors possess distinct expertise on different unseen domains. MS3D leverages this by combining different pre-trained detectors from multiple source domains and incorporating temporal information to produce high-quality pseudo-labels for fine-tuning. Our proposed Kernel-Density Estimation (KDE) Box Fusion method fuses box proposals from multiple domains to obtain pseudo-labels that surpass the performance of the best source domain detectors. MS3D exhibits greater robustness to domain shifts and produces accurate pseudo-labels over greater distances, making it well-suited for high-to-low beam domain adaptation and vice versa. Our method achieved state-of-the-art performance on all evaluated datasets, and we demonstrate that the choice of pre-trained source detectors has minimal impact on the self-training result, making MS3D suitable for real-world applications.
PDF Our code is available at https://github.com/darrenjkt/MS3D