2023-04-05 更新
Generative Diffusion Prior for Unified Image Restoration and Enhancement
Authors:Ben Fei, Zhaoyang Lyu, Liang Pan, Junzhe Zhang, Weidong Yang, Tianyue Luo, Bo Zhang, Bo Dai
Existing image restoration methods mostly leverage the posterior distribution of natural images. However, they often assume known degradation and also require supervised training, which restricts their adaptation to complex real applications. In this work, we propose the Generative Diffusion Prior (GDP) to effectively model the posterior distributions in an unsupervised sampling manner. GDP utilizes a pre-train denoising diffusion generative model (DDPM) for solving linear inverse, non-linear, or blind problems. Specifically, GDP systematically explores a protocol of conditional guidance, which is verified more practical than the commonly used guidance way. Furthermore, GDP is strength at optimizing the parameters of degradation model during the denoising process, achieving blind image restoration. Besides, we devise hierarchical guidance and patch-based methods, enabling the GDP to generate images of arbitrary resolutions. Experimentally, we demonstrate GDP’s versatility on several image datasets for linear problems, such as super-resolution, deblurring, inpainting, and colorization, as well as non-linear and blind issues, such as low-light enhancement and HDR image recovery. GDP outperforms the current leading unsupervised methods on the diverse benchmarks in reconstruction quality and perceptual quality. Moreover, GDP also generalizes well for natural images or synthesized images with arbitrary sizes from various tasks out of the distribution of the ImageNet training set.
PDF 46 pages, 38 figures, accepted by CVPR2023
点此查看论文截图
Text-Conditioned Sampling Framework for Text-to-Image Generation with Masked Generative Models
Authors:Jaewoong Lee, Sangwon Jang, Jaehyeong Jo, Jaehong Yoon, Yunji Kim, Jin-Hwa Kim, Jung-Woo Ha, Sung Ju Hwang
Token-based masked generative models are gaining popularity for their fast inference time with parallel decoding. While recent token-based approaches achieve competitive performance to diffusion-based models, their generation performance is still suboptimal as they sample multiple tokens simultaneously without considering the dependence among them. We empirically investigate this problem and propose a learnable sampling model, Text-Conditioned Token Selection (TCTS), to select optimal tokens via localized supervision with text information. TCTS improves not only the image quality but also the semantic alignment of the generated images with the given texts. To further improve the image quality, we introduce a cohesive sampling strategy, Frequency Adaptive Sampling (FAS), to each group of tokens divided according to the self-attention maps. We validate the efficacy of TCTS combined with FAS with various generative tasks, demonstrating that it significantly outperforms the baselines in image-text alignment and image quality. Our text-conditioned sampling framework further reduces the original inference time by more than 50% without modifying the original generative model.
PDF
点此查看论文截图
A Survey on Graph Diffusion Models: Generative AI in Science for Molecule, Protein and Material
Authors:Mengchun Zhang, Maryam Qamar, Taegoo Kang, Yuna Jung, Chenshuang Zhang, Sung-Ho Bae, Chaoning Zhang
Diffusion models have become a new SOTA generative modeling method in various fields, for which there are multiple survey works that provide an overall survey. With the number of articles on diffusion models increasing exponentially in the past few years, there is an increasing need for surveys of diffusion models on specific fields. In this work, we are committed to conducting a survey on the graph diffusion models. Even though our focus is to cover the progress of diffusion models in graphs, we first briefly summarize how other generative modeling methods are used for graphs. After that, we introduce the mechanism of diffusion models in various forms, which facilitates the discussion on the graph diffusion models. The applications of graph diffusion models mainly fall into the category of AI-generated content (AIGC) in science, for which we mainly focus on how graph diffusion models are utilized for generating molecules and proteins but also cover other cases, including materials design. Moreover, we discuss the issue of evaluating diffusion models in the graph domain and the existing challenges.
PDF
点此查看论文截图
Trace and Pace: Controllable Pedestrian Animation via Guided Trajectory Diffusion
Authors:Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris Kitani, Karsten Kreis, Sanja Fidler, Or Litany
We introduce a method for generating realistic pedestrian trajectories and full-body animations that can be controlled to meet user-defined goals. We draw on recent advances in guided diffusion modeling to achieve test-time controllability of trajectories, which is normally only associated with rule-based systems. Our guided diffusion model allows users to constrain trajectories through target waypoints, speed, and specified social groups while accounting for the surrounding environment context. This trajectory diffusion model is integrated with a novel physics-based humanoid controller to form a closed-loop, full-body pedestrian animation system capable of placing large crowds in a simulated environment with varying terrains. We further propose utilizing the value function learned during RL training of the animation controller to guide diffusion to produce trajectories better suited for particular scenarios such as collision avoidance and traversing uneven terrain. Video results are available on the project page at https://nv-tlabs.github.io/trace-pace .
PDF Conference on Computer Vision and Pattern Recognition (CVPR) 2023
点此查看论文截图
PODIA-3D: Domain Adaptation of 3D Generative Model Across Large Domain Gap Using Pose-Preserved Text-to-Image Diffusion
Authors:Gwanghyun Kim, Ji Ha Jang, Se Young Chun
Recently, significant advancements have been made in 3D generative models, however training these models across diverse domains is challenging and requires an huge amount of training data and knowledge of pose distribution. Text-guided domain adaptation methods have allowed the generator to be adapted to the target domains using text prompts, thereby obviating the need for assembling numerous data. Recently, DATID-3D presents impressive quality of samples in text-guided domain, preserving diversity in text by leveraging text-to-image diffusion. However, adapting 3D generators to domains with significant domain gaps from the source domain still remains challenging due to issues in current text-to-image diffusion models as following: 1) shape-pose trade-off in diffusion-based translation, 2) pose bias, and 3) instance bias in the target domain, resulting in inferior 3D shapes, low text-image correspondence, and low intra-domain diversity in the generated samples. To address these issues, we propose a novel pipeline called PODIA-3D, which uses pose-preserved text-to-image diffusion-based domain adaptation for 3D generative models. We construct a pose-preserved text-to-image diffusion model that allows the use of extremely high-level noise for significant domain changes. We also propose specialized-to-general sampling strategies to improve the details of the generated samples. Moreover, to overcome the instance bias, we introduce a text-guided debiasing method that improves intra-domain diversity. Consequently, our method successfully adapts 3D generators across significant domain gaps. Our qualitative results and user study demonstrates that our approach outperforms existing 3D text-guided domain adaptation methods in terms of text-image correspondence, realism, diversity of rendered images, and sense of depth of 3D shapes in the generated samples
PDF Project page: https://gwang-kim.github.io/podia_3d/