Speech


2023-03-31 更新

PROCTER: PROnunciation-aware ConTextual adaptER for personalized speech recognition in neural transducers

Authors:Rahul Pandey, Roger Ren, Qi Luo, Jing Liu, Ariya Rastrow, Ankur Gandhe, Denis Filimonov, Grant Strimel, Andreas Stolcke, Ivan Bulyko

End-to-End (E2E) automatic speech recognition (ASR) systems used in voice assistants often have difficulties recognizing infrequent words personalized to the user, such as names and places. Rare words often have non-trivial pronunciations, and in such cases, human knowledge in the form of a pronunciation lexicon can be useful. We propose a PROnunCiation-aware conTextual adaptER (PROCTER) that dynamically injects lexicon knowledge into an RNN-T model by adding a phonemic embedding along with a textual embedding. The experimental results show that the proposed PROCTER architecture outperforms the baseline RNN-T model by improving the word error rate (WER) by 44% and 57% when measured on personalized entities and personalized rare entities, respectively, while increasing the model size (number of trainable parameters) by only 1%. Furthermore, when evaluated in a zero-shot setting to recognize personalized device names, we observe 7% WER improvement with PROCTER, as compared to only 1% WER improvement with text-only contextual attention
PDF To appear in Proc. IEEE ICASSP

点此查看论文截图

SynthVSR: Scaling Up Visual Speech Recognition With Synthetic Supervision

Authors:Xubo Liu, Egor Lakomkin, Konstantinos Vougioukas, Pingchuan Ma, Honglie Chen, Ruiming Xie, Morrie Doulaty, Niko Moritz, Jáchym Kolář, Stavros Petridis, Maja Pantic, Christian Fuegen

Recently reported state-of-the-art results in visual speech recognition (VSR) often rely on increasingly large amounts of video data, while the publicly available transcribed video datasets are limited in size. In this paper, for the first time, we study the potential of leveraging synthetic visual data for VSR. Our method, termed SynthVSR, substantially improves the performance of VSR systems with synthetic lip movements. The key idea behind SynthVSR is to leverage a speech-driven lip animation model that generates lip movements conditioned on the input speech. The speech-driven lip animation model is trained on an unlabeled audio-visual dataset and could be further optimized towards a pre-trained VSR model when labeled videos are available. As plenty of transcribed acoustic data and face images are available, we are able to generate large-scale synthetic data using the proposed lip animation model for semi-supervised VSR training. We evaluate the performance of our approach on the largest public VSR benchmark - Lip Reading Sentences 3 (LRS3). SynthVSR achieves a WER of 43.3% with only 30 hours of real labeled data, outperforming off-the-shelf approaches using thousands of hours of video. The WER is further reduced to 27.9% when using all 438 hours of labeled data from LRS3, which is on par with the state-of-the-art self-supervised AV-HuBERT method. Furthermore, when combined with large-scale pseudo-labeled audio-visual data SynthVSR yields a new state-of-the-art VSR WER of 16.9% using publicly available data only, surpassing the recent state-of-the-art approaches trained with 29 times more non-public machine-transcribed video data (90,000 hours). Finally, we perform extensive ablation studies to understand the effect of each component in our proposed method.
PDF CVPR 2023

点此查看论文截图

Seeing What You Said: Talking Face Generation Guided by a Lip Reading Expert

Authors:Jiadong Wang, Xinyuan Qian, Malu Zhang, Robby T. Tan, Haizhou Li

Talking face generation, also known as speech-to-lip generation, reconstructs facial motions concerning lips given coherent speech input. The previous studies revealed the importance of lip-speech synchronization and visual quality. Despite much progress, they hardly focus on the content of lip movements i.e., the visual intelligibility of the spoken words, which is an important aspect of generation quality. To address the problem, we propose using a lip-reading expert to improve the intelligibility of the generated lip regions by penalizing the incorrect generation results. Moreover, to compensate for data scarcity, we train the lip-reading expert in an audio-visual self-supervised manner. With a lip-reading expert, we propose a novel contrastive learning to enhance lip-speech synchronization, and a transformer to encode audio synchronically with video, while considering global temporal dependency of audio. For evaluation, we propose a new strategy with two different lip-reading experts to measure intelligibility of the generated videos. Rigorous experiments show that our proposal is superior to other State-of-the-art (SOTA) methods, such as Wav2Lip, in reading intelligibility i.e., over 38% Word Error Rate (WER) on LRS2 dataset and 27.8% accuracy on LRW dataset. We also achieve the SOTA performance in lip-speech synchronization and comparable performances in visual quality.
PDF accepted by CVPR 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录