无监督/半监督/对比学习


2023-03-30 更新

CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World Point Cloud Data

Authors:Yihan Zeng, Chenhan Jiang, Jiageng Mao, Jianhua Han, Chaoqiang Ye, Qingqiu Huang, Dit-Yan Yeung, Zhen Yang, Xiaodan Liang, Hang Xu

Contrastive Language-Image Pre-training, benefiting from large-scale unlabeled text-image pairs, has demonstrated great performance in open-world vision understanding tasks. However, due to the limited Text-3D data pairs, adapting the success of 2D Vision-Language Models (VLM) to the 3D space remains an open problem. Existing works that leverage VLM for 3D understanding generally resort to constructing intermediate 2D representations for the 3D data, but at the cost of losing 3D geometry information. To take a step toward open-world 3D vision understanding, we propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$^2$) to directly learn the transferable 3D point cloud representation in realistic scenarios with a novel proxy alignment mechanism. Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios. On top of that, we propose a cross-modal contrastive objective to learn semantic and instance-level aligned point cloud representation. Experimental results on both indoor and outdoor scenarios show that our learned 3D representation has great transfer ability in downstream tasks, including zero-shot and few-shot 3D recognition, which boosts the state-of-the-art methods by large margins. Furthermore, we provide analyses of the capability of different representations in real scenarios and present the optional ensemble scheme.
PDF To appear at CVPR 2023

点此查看论文截图

Curricular Contrastive Regularization for Physics-aware Single Image Dehazing

Authors:Yu Zheng, Jiahui Zhan, Shengfeng He, Junyu Dong, Yong Du

Considering the ill-posed nature, contrastive regularization has been developed for single image dehazing, introducing the information from negative images as a lower bound. However, the contrastive samples are nonconsensual, as the negatives are usually represented distantly from the clear (i.e., positive) image, leaving the solution space still under-constricted. Moreover, the interpretability of deep dehazing models is underexplored towards the physics of the hazing process. In this paper, we propose a novel curricular contrastive regularization targeted at a consensual contrastive space as opposed to a non-consensual one. Our negatives, which provide better lower-bound constraints, can be assembled from 1) the hazy image, and 2) corresponding restorations by other existing methods. Further, due to the different similarities between the embeddings of the clear image and negatives, the learning difficulty of the multiple components is intrinsically imbalanced. To tackle this issue, we customize a curriculum learning strategy to reweight the importance of different negatives. In addition, to improve the interpretability in the feature space, we build a physics-aware dual-branch unit according to the atmospheric scattering model. With the unit, as well as curricular contrastive regularization, we establish our dehazing network, named C2PNet. Extensive experiments demonstrate that our C2PNet significantly outperforms state-of-the-art methods, with extreme PSNR boosts of 3.94dB and 1.50dB, respectively, on SOTS-indoor and SOTS-outdoor datasets.
PDF This paper is accepted by CVPR2023

点此查看论文截图

Spatio-Temporal Pixel-Level Contrastive Learning-based Source-Free Domain Adaptation for Video Semantic Segmentation

Authors:Shao-Yuan Lo, Poojan Oza, Sumanth Chennupati, Alejandro Galindo, Vishal M. Patel

Unsupervised Domain Adaptation (UDA) of semantic segmentation transfers labeled source knowledge to an unlabeled target domain by relying on accessing both the source and target data. However, the access to source data is often restricted or infeasible in real-world scenarios. Under the source data restrictive circumstances, UDA is less practical. To address this, recent works have explored solutions under the Source-Free Domain Adaptation (SFDA) setup, which aims to adapt a source-trained model to the target domain without accessing source data. Still, existing SFDA approaches use only image-level information for adaptation, making them sub-optimal in video applications. This paper studies SFDA for Video Semantic Segmentation (VSS), where temporal information is leveraged to address video adaptation. Specifically, we propose Spatio-Temporal Pixel-Level (STPL) contrastive learning, a novel method that takes full advantage of spatio-temporal information to tackle the absence of source data better. STPL explicitly learns semantic correlations among pixels in the spatio-temporal space, providing strong self-supervision for adaptation to the unlabeled target domain. Extensive experiments show that STPL achieves state-of-the-art performance on VSS benchmarks compared to current UDA and SFDA approaches. Code is available at: https://github.com/shaoyuanlo/STPL
PDF Accepted at IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录