2023-03-30 更新
Domain Adaptive Semantic Segmentation by Optimal Transport
Authors:Yaqian Guo, Xin Wang, Ce Li, Shihui Ying
Scene segmentation is widely used in the field of autonomous driving for environment perception, and semantic scene segmentation (3S) has received a great deal of attention due to the richness of the semantic information it contains. It aims to assign labels to pixels in an image, thus enabling automatic image labeling. Current approaches are mainly based on convolutional neural networks (CNN), but they rely on a large number of labels. Therefore, how to use a small size of labeled data to achieve semantic segmentation becomes more and more important. In this paper, we propose a domain adaptation (DA) framework based on optimal transport (OT) and attention mechanism to address this issue. Concretely, first we generate the output space via CNN due to its superiority of feature representation. Second, we utilize OT to achieve a more robust alignment of source and target domains in output space, where the OT plan defines a well attention mechanism to improve the adaptation of the model. In particular, with OT, the number of network parameters has been reduced and the network has been better interpretable. Third, to better describe the multi-scale property of features, we construct a multi-scale segmentation network to perform domain adaptation. Finally, in order to verify the performance of our proposed method, we conduct experimental comparison with three benchmark and four SOTA methods on three scene datasets, and the mean intersection-over-union (mIOU) has been significant improved, and visualization results under multiple domain adaptation scenarios also show that our proposed method has better performance than compared semantic segmentation methods.
PDF
点此查看论文截图
Visibility Aware Human-Object Interaction Tracking from Single RGB Camera
Authors:Xianghui Xie, Bharat Lal Bhatnagar, Gerard Pons-Moll
Capturing the interactions between humans and their environment in 3D is important for many applications in robotics, graphics, and vision. Recent works to reconstruct the 3D human and object from a single RGB image do not have consistent relative translation across frames because they assume a fixed depth. Moreover, their performance drops significantly when the object is occluded. In this work, we propose a novel method to track the 3D human, object, contacts between them, and their relative translation across frames from a single RGB camera, while being robust to heavy occlusions. Our method is built on two key insights. First, we condition our neural field reconstructions for human and object on per-frame SMPL model estimates obtained by pre-fitting SMPL to a video sequence. This improves neural reconstruction accuracy and produces coherent relative translation across frames. Second, human and object motion from visible frames provides valuable information to infer the occluded object. We propose a novel transformer-based neural network that explicitly uses object visibility and human motion to leverage neighbouring frames to make predictions for the occluded frames. Building on these insights, our method is able to track both human and object robustly even under occlusions. Experiments on two datasets show that our method significantly improves over the state-of-the-art methods. Our code and pretrained models are available at: https://virtualhumans.mpi-inf.mpg.de/VisTracker
PDF accepted to CVPR 2023
点此查看论文截图
Improving Object Detection in Medical Image Analysis through Multiple Expert Annotators: An Empirical Investigation
Authors:Hieu H. Pham, Khiem H. Le, Tuan V. Tran, Ha Q. Nguyen
The work discusses the use of machine learning algorithms for anomaly detection in medical image analysis and how the performance of these algorithms depends on the number of annotators and the quality of labels. To address the issue of subjectivity in labeling with a single annotator, we introduce a simple and effective approach that aggregates annotations from multiple annotators with varying levels of expertise. We then aim to improve the efficiency of predictive models in abnormal detection tasks by estimating hidden labels from multiple annotations and using a re-weighted loss function to improve detection performance. Our method is evaluated on a real-world medical imaging dataset and outperforms relevant baselines that do not consider disagreements among annotators.
PDF This is a short version submitted to the Midwest Machine Learning Symposium (MMLS 2023), Chicago, IL, USA
点此查看论文截图
BEVSimDet: Simulated Multi-modal Distillation in Bird’s-Eye View for Multi-view 3D Object Detection
Authors:Haimei Zhao, Qiming Zhang, Shanshan Zhao, Jing Zhang, Dacheng Tao
Multi-view camera-based 3D object detection has gained popularity due to its low cost. But accurately inferring 3D geometry solely from camera data remains challenging, which impacts model performance. One promising approach to address this issue is to distill precise 3D geometry knowledge from LiDAR data. However, transferring knowledge between different sensor modalities is hindered by the significant modality gap. In this paper, we approach this challenge from the perspective of both architecture design and knowledge distillation and present a new simulated multi-modal 3D object detection method named BEVSimDet. We first introduce a novel framework that includes a LiDAR and camera fusion-based teacher and a simulated multi-modal student, where the student simulates multi-modal features with image-only input. To facilitate effective distillation, we propose a simulated multi-modal distillation scheme that supports intra-modal, cross-modal, and multi-modal distillation simultaneously. By combining them together, BEVSimDet can learn better feature representations for 3D object detection while enjoying cost-effective camera-only deployment. Experimental results on the challenging nuScenes benchmark demonstrate the effectiveness and superiority of BEVSimDet over recent representative methods. The source code will be released.
PDF 15 pages
点此查看论文截图
Mask-free OVIS: Open-Vocabulary Instance Segmentation without Manual Mask Annotations
Authors:Vibashan VS, Ning Yu, Chen Xing, Can Qin, Mingfei Gao, Juan Carlos Niebles, Vishal M. Patel, Ran Xu
Existing instance segmentation models learn task-specific information using manual mask annotations from base (training) categories. These mask annotations require tremendous human effort, limiting the scalability to annotate novel (new) categories. To alleviate this problem, Open-Vocabulary (OV) methods leverage large-scale image-caption pairs and vision-language models to learn novel categories. In summary, an OV method learns task-specific information using strong supervision from base annotations and novel category information using weak supervision from image-captions pairs. This difference between strong and weak supervision leads to overfitting on base categories, resulting in poor generalization towards novel categories. In this work, we overcome this issue by learning both base and novel categories from pseudo-mask annotations generated by the vision-language model in a weakly supervised manner using our proposed Mask-free OVIS pipeline. Our method automatically generates pseudo-mask annotations by leveraging the localization ability of a pre-trained vision-language model for objects present in image-caption pairs. The generated pseudo-mask annotations are then used to supervise an instance segmentation model, freeing the entire pipeline from any labour-expensive instance-level annotations and overfitting. Our extensive experiments show that our method trained with just pseudo-masks significantly improves the mAP scores on the MS-COCO dataset and OpenImages dataset compared to the recent state-of-the-art methods trained with manual masks. Codes and models are provided in https://vibashan.github.io/ovis-web/.
PDF Accepted to CVPR 2023. Project site: https://vibashan.github.io/ovis-web/