2023-03-27 更新
Exploring Structured Semantic Prior for Multi Label Recognition with Incomplete Labels
Authors:Zixuan Ding, Ao Wang, Hui Chen, Qiang Zhang, Pengzhang Liu, Yongjun Bao, Weipeng Yan, Jungong Han
Multi-label recognition (MLR) with incomplete labels is very challenging. Recent works strive to explore the image-to-label correspondence in the vision-language model, \ie, CLIP, to compensate for insufficient annotations. In spite of promising performance, they generally overlook the valuable prior about the label-to-label correspondence. In this paper, we advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior about the label-to-label correspondence via a semantic prior prompter. We then present a novel Semantic Correspondence Prompt Network (SCPNet), which can thoroughly explore the structured semantic prior. A Prior-Enhanced Self-Supervised Learning method is further introduced to enhance the use of the prior. Comprehensive experiments and analyses on several widely used benchmark datasets show that our method significantly outperforms existing methods on all datasets, well demonstrating the effectiveness and the superiority of our method. Our code will be available at https://github.com/jameslahm/SCPNet.
PDF Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2023
点此查看论文截图
FishDreamer: Towards Fisheye Semantic Completion via Unified Image Outpainting and Segmentation
Authors:Hao Shi, Yu Li, Kailun Yang, Jiaming Zhang, Kunyu Peng, Alina Roitberg, Yaozu Ye, Huajian Ni, Kaiwei Wang, Rainer Stiefelhagen
This paper raises the new task of Fisheye Semantic Completion (FSC), where dense texture, structure, and semantics of a fisheye image are inferred even beyond the sensor field-of-view (FoV). Fisheye cameras have larger FoV than ordinary pinhole cameras, yet its unique special imaging model naturally leads to a blind area at the edge of the image plane. This is suboptimal for safety-critical applications since important perception tasks, such as semantic segmentation, become very challenging within the blind zone. Previous works considered the out-FoV outpainting and in-FoV segmentation separately. However, we observe that these two tasks are actually closely coupled. To jointly estimate the tightly intertwined complete fisheye image and scene semantics, we introduce the new FishDreamer which relies on successful ViTs enhanced with a novel Polar-aware Cross Attention module (PCA) to leverage dense context and guide semantically-consistent content generation while considering different polar distributions. In addition to the contribution of the novel task and architecture, we also derive Cityscapes-BF and KITTI360-BF datasets to facilitate training and evaluation of this new track. Our experiments demonstrate that the proposed FishDreamer outperforms methods solving each task in isolation and surpasses alternative approaches on the Fisheye Semantic Completion. Code and datasets will be available at https://github.com/MasterHow/FishDreamer.
PDF Code and datasets will be available at https://github.com/MasterHow/FishDreamer