Few-Shot


2023-03-27 更新

Harmonizing Base and Novel Classes: A Class-Contrastive Approach for Generalized Few-Shot Segmentation

Authors:Weide Liu, Zhonghua Wu, Yang Zhao, Yuming Fang, Chuan-Sheng Foo, Jun Cheng, Guosheng Lin

Current methods for few-shot segmentation (FSSeg) have mainly focused on improving the performance of novel classes while neglecting the performance of base classes. To overcome this limitation, the task of generalized few-shot semantic segmentation (GFSSeg) has been introduced, aiming to predict segmentation masks for both base and novel classes. However, the current prototype-based methods do not explicitly consider the relationship between base and novel classes when updating prototypes, leading to a limited performance in identifying true categories. To address this challenge, we propose a class contrastive loss and a class relationship loss to regulate prototype updates and encourage a large distance between prototypes from different classes, thus distinguishing the classes from each other while maintaining the performance of the base classes. Our proposed approach achieves new state-of-the-art performance for the generalized few-shot segmentation task on PASCAL VOC and MS COCO datasets.
PDF

点此查看论文截图

Personalizing Task-oriented Dialog Systems via Zero-shot Generalizable Reward Function

Authors:A. B. Siddique, M. H. Maqbool, Kshitija Taywade, Hassan Foroosh

Task-oriented dialog systems enable users to accomplish tasks using natural language. State-of-the-art systems respond to users in the same way regardless of their personalities, although personalizing dialogues can lead to higher levels of adoption and better user experiences. Building personalized dialog systems is an important, yet challenging endeavor and only a handful of works took on the challenge. Most existing works rely on supervised learning approaches and require laborious and expensive labeled training data for each user profile. Additionally, collecting and labeling data for each user profile is virtually impossible. In this work, we propose a novel framework, P-ToD, to personalize task-oriented dialog systems capable of adapting to a wide range of user profiles in an unsupervised fashion using a zero-shot generalizable reward function. P-ToD uses a pre-trained GPT-2 as a backbone model and works in three phases. Phase one performs task-specific training. Phase two kicks off unsupervised personalization by leveraging the proximal policy optimization algorithm that performs policy gradients guided by the zero-shot generalizable reward function. Our novel reward function can quantify the quality of the generated responses even for unseen profiles. The optional final phase fine-tunes the personalized model using a few labeled training examples. We conduct extensive experimental analysis using the personalized bAbI dialogue benchmark for five tasks and up to 180 diverse user profiles. The experimental results demonstrate that P-ToD, even when it had access to zero labeled examples, outperforms state-of-the-art supervised personalization models and achieves competitive performance on BLEU and ROUGE metrics when compared to a strong fully-supervised GPT-2 baseline
PDF 11 pages, 4 tables, 31st ACM International Conference on Information and Knowledge Management (CIKM’22)

点此查看论文截图

$k$NN Prompting: Beyond-Context Learning with Calibration-Free Nearest Neighbor Inference

Authors:Benfeng Xu, Quan Wang, Zhendong Mao, Yajuan Lyu, Qiaoqiao She, Yongdong Zhang

In-Context Learning (ICL), which formulates target tasks as prompt completion conditioned on in-context demonstrations, has become the prevailing utilization of LLMs. In this paper, we first disclose an actual predicament for this typical usage that it can not scale up with training data due to context length restriction. Besides, existing works have shown that ICL also suffers from various biases and requires delicate calibration treatment. To address both challenges, we advocate a simple and effective solution, $k$NN Prompting, which first queries LLM with training data for distributed representations, then predicts test instances by simply referring to nearest neighbors. We conduct comprehensive experiments to demonstrate its two-fold superiority: 1) Calibration-Free: $k$NN Prompting does not directly align LLM output distribution with task-specific label space, instead leverages such distribution to align test and training instances. It significantly outperforms state-of-the-art calibration-based methods under comparable few-shot scenario. 2) Beyond-Context: $k$NN Prompting can further scale up effectively with as many training data as are available, continually bringing substantial improvements. The scaling trend holds across 10 orders of magnitude ranging from 2 shots to 1024 shots as well as different LLMs scales ranging from 0.8B to 30B. It successfully bridges data scaling into model scaling, and brings new potentials for the gradient-free paradigm of LLM deployment. Code is publicly available.
PDF ICLR 2023. Code is available at https://github.com/BenfengXu/KNNPrompting

点此查看论文截图

Two-level Graph Network for Few-Shot Class-Incremental Learning

Authors:Hao Chen, Linyan Li, Fan Lyu, Fuyuan Hu, Zhenping Xia, Fenglei Xu

Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points, without forgetting knowledge of old classes. The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbates the notorious catastrophic forgetting problems. However, existing FSCIL methods ignore the semantic relationships between sample-level and class-level. % Using the advantage that graph neural network (GNN) can mine rich information among few samples, In this paper, we designed a two-level graph network for FSCIL named Sample-level and Class-level Graph Neural Network (SCGN). Specifically, a pseudo incremental learning paradigm is designed in SCGN, which synthesizes virtual few-shot tasks as new tasks to optimize SCGN model parameters in advance. Sample-level graph network uses the relationship of a few samples to aggregate similar samples and obtains refined class-level features. Class-level graph network aims to mitigate the semantic conflict between prototype features of new classes and old classes. SCGN builds two-level graph networks to guarantee the latent semantic of each few-shot class can be effectively represented in FSCIL. Experiments on three popular benchmark datasets show that our method significantly outperforms the baselines and sets new state-of-the-art results with remarkable advantages.
PDF arXiv admin note: text overlap with arXiv:2203.06953 by other authors

点此查看论文截图

Few Shot Medical Image Segmentation with Cross Attention Transformer

Authors:Yi Lin, Yufan Chen, Kwang-Ting Cheng, Hao Chen

Medical image segmentation has made significant progress in recent years. Deep learning-based methods are recognized as data-hungry techniques, requiring large amounts of data with manual annotations. However, manual annotation is expensive in the field of medical image analysis, which requires domain-specific expertise. To address this challenge, few-shot learning has the potential to learn new classes from only a few examples. In this work, we propose a novel framework for few-shot medical image segmentation, termed CAT-Net, based on cross masked attention Transformer. Our proposed network mines the correlations between the support image and query image, limiting them to focus only on useful foreground information and boosting the representation capacity of both the support prototype and query features. We further design an iterative refinement framework that refines the query image segmentation iteratively and promotes the support feature in turn. We validated the proposed method on three public datasets: Abd-CT, Abd-MRI, and Card-MRI. Experimental results demonstrate the superior performance of our method compared to state-of-the-art methods and the effectiveness of each component. we will release the source codes of our method upon acceptance.
PDF Submitted to MICCAI 2023

点此查看论文截图

SPEC: Summary Preference Decomposition for Low-Resource Abstractive Summarization

Authors:Yi-Syuan Chen, Yun-Zhu Song, Hong-Han Shuai

Neural abstractive summarization has been widely studied and achieved great success with large-scale corpora. However, the considerable cost of annotating data motivates the need for learning strategies under low-resource settings. In this paper, we investigate the problems of learning summarizers with only few examples and propose corresponding methods for improvements. First, typical transfer learning methods are prone to be affected by data properties and learning objectives in the pretext tasks. Therefore, based on pretrained language models, we further present a meta learning framework to transfer few-shot learning processes from source corpora to the target corpus. Second, previous methods learn from training examples without decomposing the content and preference. The generated summaries could therefore be constrained by the preference bias in the training set, especially under low-resource settings. As such, we propose decomposing the contents and preferences during learning through the parameter modulation, which enables control over preferences during inference. Third, given a target application, specifying required preferences could be non-trivial because the preferences may be difficult to derive through observations. Therefore, we propose a novel decoding method to automatically estimate suitable preferences and generate corresponding summary candidates from the few training examples. Extensive experiments demonstrate that our methods achieve state-of-the-art performance on six diverse corpora with 30.11%/33.95%/27.51% and 26.74%/31.14%/24.48% average improvements on ROUGE-1/2/L under 10- and 100-example settings.
PDF Accepted by IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP) 2022; Published Version

点此查看论文截图

CF-Font: Content Fusion for Few-shot Font Generation

Authors:Chi Wang, Min Zhou, Tiezheng Ge, Yuning Jiang, Hujun Bao, Weiwei Xu

Content and style disentanglement is an effective way to achieve few-shot font generation. It allows to transfer the style of the font image in a source domain to the style defined with a few reference images in a target domain. However, the content feature extracted using a representative font might not be optimal. In light of this, we propose a content fusion module (CFM) to project the content feature into a linear space defined by the content features of basis fonts, which can take the variation of content features caused by different fonts into consideration. Our method also allows to optimize the style representation vector of reference images through a lightweight iterative style-vector refinement (ISR) strategy. Moreover, we treat the 1D projection of a character image as a probability distribution and leverage the distance between two distributions as the reconstruction loss (namely projected character loss, PCL). Compared to L2 or L1 reconstruction loss, the distribution distance pays more attention to the global shape of characters. We have evaluated our method on a dataset of 300 fonts with 6.5k characters each. Experimental results verify that our method outperforms existing state-of-the-art few-shot font generation methods by a large margin. The source code can be found at https://github.com/wangchi95/CF-Font.
PDF Accepted by CVPR 2023

点此查看论文截图

Class-Incremental Exemplar Compression for Class-Incremental Learning

Authors:Zilin Luo, Yaoyao Liu, Bernt Schiele, Qianru Sun

Exemplar-based class-incremental learning (CIL) finetunes the model with all samples of new classes but few-shot exemplars of old classes in each incremental phase, where the “few-shot” abides by the limited memory budget. In this paper, we break this “few-shot” limit based on a simple yet surprisingly effective idea: compressing exemplars by downsampling non-discriminative pixels and saving “many-shot” compressed exemplars in the memory. Without needing any manual annotation, we achieve this compression by generating 0-1 masks on discriminative pixels from class activation maps (CAM). We propose an adaptive mask generation model called class-incremental masking (CIM) to explicitly resolve two difficulties of using CAM: 1) transforming the heatmaps of CAM to 0-1 masks with an arbitrary threshold leads to a trade-off between the coverage on discriminative pixels and the quantity of exemplars, as the total memory is fixed; and 2) optimal thresholds vary for different object classes, which is particularly obvious in the dynamic environment of CIL. We optimize the CIM model alternatively with the conventional CIL model through a bilevel optimization problem. We conduct extensive experiments on high-resolution CIL benchmarks including Food-101, ImageNet-100, and ImageNet-1000, and show that using the compressed exemplars by CIM can achieve a new state-of-the-art CIL accuracy, e.g., 4.8 percentage points higher than FOSTER on 10-Phase ImageNet-1000. Our code is available at https://github.com/xfflzl/CIM-CIL.
PDF Accepted to CVPR 2023

点此查看论文截图

Scaling Expert Language Models with Unsupervised Domain Discovery

Authors:Suchin Gururangan, Margaret Li, Mike Lewis, Weijia Shi, Tim Althoff, Noah A. Smith, Luke Zettlemoyer

Large language models are typically trained densely: all parameters are updated with respect to all inputs. This requires synchronization of billions of parameters across thousands of GPUs. We introduce a simple but effective method to asynchronously train large, sparse language models on arbitrary text corpora. Our method clusters a corpus into sets of related documents, trains a separate expert language model on each cluster, and combines them in a sparse ensemble for inference. This approach generalizes embarrassingly parallel training by automatically discovering the domains for each expert, and eliminates nearly all the communication overhead of existing sparse language models. Our technique outperforms dense baselines on multiple corpora and few-shot tasks, and our analysis shows that specializing experts to meaningful clusters is key to these gains. Performance also improves with the number of experts and size of training data, suggesting this is a highly efficient and accessible approach to training large language models.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录