人脸相关


2023-03-24 更新

Controllable Inversion of Black-Box Face-Recognition Models via Diffusion

Authors:Manuel Kansy, Anton Raël, Graziana Mignone, Jacek Naruniec, Christopher Schroers, Markus Gross, Romann M. Weber

Face recognition models embed a face image into a low-dimensional identity vector containing abstract encodings of identity-specific facial features that allow individuals to be distinguished from one another. We tackle the challenging task of inverting the latent space of pre-trained face recognition models without full model access (i.e. black-box setting). A variety of methods have been proposed in literature for this task, but they have serious shortcomings such as a lack of realistic outputs, long inference times, and strong requirements for the data set and accessibility of the face recognition model. Through an analysis of the black-box inversion problem, we show that the conditional diffusion model loss naturally emerges and that we can effectively sample from the inverse distribution even without an identity-specific loss. Our method, named identity denoising diffusion probabilistic model (ID3PM), leverages the stochastic nature of the denoising diffusion process to produce high-quality, identity-preserving face images with various backgrounds, lighting, poses, and expressions. We demonstrate state-of-the-art performance in terms of identity preservation and diversity both qualitatively and quantitatively. Our method is the first black-box face recognition model inversion method that offers intuitive control over the generation process and does not suffer from any of the common shortcomings from competing methods.
PDF 34 pages. Preprint. Under review

点此查看论文截图

Improvement of Color Image Analysis Using a New Hybrid Face Recognition Algorithm based on Discrete Wavelets and Chebyshev Polynomials

Authors:Hassan Mohamed Muhi-Aldeen, Maha Ammar Mustafa, Asma A. Abdulrahman, Jabbar Abed Eleiwy, Fouad S. Tahir, Yurii Khlaponin

This work is unique in the use of discrete wavelets that were built from or derived from Chebyshev polynomials of the second and third kind, filter the Discrete Second Chebyshev Wavelets Transform (DSCWT), and derive two effective filters. The Filter Discrete Third Chebyshev Wavelets Transform (FDTCWT) is used in the process of analyzing color images and removing noise and impurities that accompany the image, as well as because of the large amount of data that makes up the image as it is taken. These data are massive, making it difficult to deal with each other during transmission. However to address this issue, the image compression technique is used, with the image not losing information due to the readings that were obtained, and the results were satisfactory. Mean Square Error (MSE), Peak Signal Noise Ratio (PSNR), Bit Per Pixel (BPP), and Compression Ratio (CR) Coronavirus is the initial treatment, while the processing stage is done with network training for Convolutional Neural Networks (CNN) with Discrete Second Chebeshev Wavelets Convolutional Neural Network (DSCWCNN) and Discrete Third Chebeshev Wavelets Convolutional Neural Network (DTCWCNN) to create an efficient algorithm for face recognition, and the best results were achieved in accuracy and in the least amount of time. Two samples of color images that were made or implemented were used. The proposed theory was obtained with fast and good results; the results are evident shown in the tables below.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录