2023-03-23 更新
MV-MR: multi-views and multi-representations for self-supervised learning and knowledge distillation
Authors:Vitaliy Kinakh, Mariia Drozdova, Slava Voloshynovskiy
We present a new method of self-supervised learning and knowledge distillation based on the multi-views and multi-representations (MV-MR). The MV-MR is based on the maximization of dependence between learnable embeddings from augmented and non-augmented views, jointly with the maximization of dependence between learnable embeddings from augmented view and multiple non-learnable representations from non-augmented view. We show that the proposed method can be used for efficient self-supervised classification and model-agnostic knowledge distillation. Unlike other self-supervised techniques, our approach does not use any contrastive learning, clustering, or stop gradients. MV-MR is a generic framework allowing the incorporation of constraints on the learnable embeddings via the usage of image multi-representations as regularizers. Along this line, knowledge distillation is considered a particular case of such a regularization. MV-MR provides the state-of-the-art performance on the STL10 and ImageNet-1K datasets among non-contrastive and clustering-free methods. We show that a lower complexity ResNet50 model pretrained using proposed knowledge distillation based on the CLIP ViT model achieves state-of-the-art performance on STL10 linear evaluation. The code is available at: https://github.com/vkinakh/mv-mr
PDF
点此查看论文截图
A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive Learning
Authors:Yuxin Zhang, Fan Tang, Weiming Dong, Haibin Huang, Chongyang Ma, Tong-Yee Lee, Changsheng Xu
We present Unified Contrastive Arbitrary Style Transfer (UCAST), a novel style representation learning and transfer framework, which can fit in most existing arbitrary image style transfer models, e.g., CNN-based, ViT-based, and flow-based methods. As the key component in image style transfer tasks, a suitable style representation is essential to achieve satisfactory results. Existing approaches based on deep neural network typically use second-order statistics to generate the output. However, these hand-crafted features computed from a single image cannot leverage style information sufficiently, which leads to artifacts such as local distortions and style inconsistency. To address these issues, we propose to learn style representation directly from a large amount of images based on contrastive learning, by taking the relationships between specific styles and the holistic style distribution into account. Specifically, we present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature. Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer. We carry out qualitative and quantitative evaluations to show that our approach produces superior results than those obtained via state-of-the-art methods.
PDF arXiv admin note: substantial text overlap with arXiv:2205.09542