检测/分割/跟踪


2023-03-22 更新

Commonsense Knowledge Assisted Deep Learning for Resource-constrained and Fine-grained Object Detection

Authors:Pu Zhang, Bin Liu

In this paper, we consider fine-grained image object detection in resource-constrained cases such as edge computing. Deep learning (DL), namely learning with deep neural networks (DNNs), has become the dominating approach to object detection. To achieve accurate fine-grained detection, one needs to employ a large enough DNN model and a vast amount of data annotations, which brings a challenge for using modern DL object detectors in resource-constrained cases. To this end, we propose an approach, which leverages commonsense knowledge to assist a coarse-grained object detector to get accurate fine-grained detection results. Specifically, we introduce a commonsense knowledge inference module (CKIM) to translate coarse-grained labels given by a backbone lightweight coarse-grained DL detector to fine-grained labels. We consider both crisp-rule and fuzzy-rule based inference in our CKIM; the latter is used to handle ambiguity in the target semantic labels. We implement our method based on several modern DL detectors, namely YOLOv4, Mobilenetv3-SSD and YOLOv7-tiny. Experiment results show that our approach outperforms benchmark detectors remarkably in terms of accuracy, model size and processing latency.
PDF 7 pages

点此查看论文截图

Sketch2Saliency: Learning to Detect Salient Objects from Human Drawings

Authors:Ayan Kumar Bhunia, Subhadeep Koley, Amandeep Kumar, Aneeshan Sain, Pinaki Nath Chowdhury, Tao Xiang, Yi-Zhe song

Human sketch has already proved its worth in various visual understanding tasks (e.g., retrieval, segmentation, image-captioning, etc). In this paper, we reveal a new trait of sketches - that they are also salient. This is intuitive as sketching is a natural attentive process at its core. More specifically, we aim to study how sketches can be used as a weak label to detect salient objects present in an image. To this end, we propose a novel method that emphasises on how “salient object” could be explained by hand-drawn sketches. To accomplish this, we introduce a photo-to-sketch generation model that aims to generate sequential sketch coordinates corresponding to a given visual photo through a 2D attention mechanism. Attention maps accumulated across the time steps give rise to salient regions in the process. Extensive quantitative and qualitative experiments prove our hypothesis and delineate how our sketch-based saliency detection model gives a competitive performance compared to the state-of-the-art.
PDF Accepted in CVPR 2023

点此查看论文截图

CAFS: Class Adaptive Framework for Semi-Supervised Semantic Segmentation

Authors:Jingi Ju, Hyeoncheol Noh, Yooseung Wang, Minseok Seo, Dong-Geol Choi

Semi-supervised semantic segmentation learns a model for classifying pixels into specific classes using a few labeled samples and numerous unlabeled images. The recent leading approach is consistency regularization by selftraining with pseudo-labeling pixels having high confidences for unlabeled images. However, using only highconfidence pixels for self-training may result in losing much of the information in the unlabeled datasets due to poor confidence calibration of modern deep learning networks. In this paper, we propose a class-adaptive semisupervision framework for semi-supervised semantic segmentation (CAFS) to cope with the loss of most information that occurs in existing high-confidence-based pseudolabeling methods. Unlike existing semi-supervised semantic segmentation frameworks, CAFS constructs a validation set on a labeled dataset, to leverage the calibration performance for each class. On this basis, we propose a calibration aware class-wise adaptive thresholding and classwise adaptive oversampling using the analysis results from the validation set. Our proposed CAFS achieves state-ofthe-art performance on the full data partition of the base PASCAL VOC 2012 dataset and on the 1/4 data partition of the Cityscapes dataset with significant margins of 83.0% and 80.4%, respectively. The code is available at https://github.com/cjf8899/CAFS.
PDF 13 pages, 9 figures

点此查看论文截图

Novel Class Discovery for 3D Point Cloud Semantic Segmentation

Authors:Luigi Riz, Cristiano Saltori, Elisa Ricci, Fabio Poiesi

Novel class discovery (NCD) for semantic segmentation is the task of learning a model that can segment unlabelled (novel) classes using only the supervision from labelled (base) classes. This problem has recently been pioneered for 2D image data, but no work exists for 3D point cloud data. In fact, the assumptions made for 2D are loosely applicable to 3D in this case. This paper is presented to advance the state of the art on point cloud data analysis in four directions. Firstly, we address the new problem of NCD for point cloud semantic segmentation. Secondly, we show that the transposition of the only existing NCD method for 2D semantic segmentation to 3D data is suboptimal. Thirdly, we present a new method for NCD based on online clustering that exploits uncertainty quantification to produce prototypes for pseudo-labelling the points of the novel classes. Lastly, we introduce a new evaluation protocol to assess the performance of NCD for point cloud semantic segmentation. We thoroughly evaluate our method on SemanticKITTI and SemanticPOSS datasets, showing that it can significantly outperform the baseline. Project page at this link: https://github.com/LuigiRiz/NOPS.
PDF Paper accepted at CVPR 2023

点此查看论文截图

DiffuMask: Synthesizing Images with Pixel-level Annotations for Semantic Segmentation Using Diffusion Models

Authors:Weijia Wu, Yuzhong Zhao, Mike Zheng Shou, Hong Zhou, Chunhua Shen

Collecting and annotating images with pixel-wise labels is time-consuming and laborious. In contrast, synthetic data can be freely available using a generative model (e.g., DALL-E, Stable Diffusion). In this paper, we show that it is possible to automatically obtain accurate semantic masks of synthetic images generated by the Off-the-shelf Stable Diffusion model, which uses only text-image pairs during training. Our approach, called DiffuMask, exploits the potential of the cross-attention map between text and image, which is natural and seamless to extend the text-driven image synthesis to semantic mask generation. DiffuMask uses text-guided cross-attention information to localize class/word-specific regions, which are combined with practical techniques to create a novel high-resolution and class-discriminative pixel-wise mask. The methods help to reduce data collection and annotation costs obviously. Experiments demonstrate that the existing segmentation methods trained on synthetic data of DiffuMask can achieve a competitive performance over the counterpart of real data (VOC 2012, Cityscapes). For some classes (e.g., bird), DiffuMask presents promising performance, close to the stateof-the-art result of real data (within 3% mIoU gap). Moreover, in the open-vocabulary segmentation (zero-shot) setting, DiffuMask achieves a new SOTA result on Unseen class of VOC 2012. The project website can be found at https://weijiawu.github.io/DiffusionMask/.
PDF

点此查看论文截图

Detecting Everything in the Open World: Towards Universal Object Detection

Authors:Zhenyu Wang, Yali Li, Xi Chen, Ser-Nam Lim, Antonio Torralba, Hengshuang Zhao, Shengjin Wang

In this paper, we formally address universal object detection, which aims to detect every scene and predict every category. The dependence on human annotations, the limited visual information, and the novel categories in the open world severely restrict the universality of traditional detectors. We propose \textbf{UniDetector}, a universal object detector that has the ability to recognize enormous categories in the open world. The critical points for the universality of UniDetector are: 1) it leverages images of multiple sources and heterogeneous label spaces for training through the alignment of image and text spaces, which guarantees sufficient information for universal representations. 2) it generalizes to the open world easily while keeping the balance between seen and unseen classes, thanks to abundant information from both vision and language modalities. 3) it further promotes the generalization ability to novel categories through our proposed decoupling training manner and probability calibration. These contributions allow UniDetector to detect over 7k categories, the largest measurable category size so far, with only about 500 classes participating in training. Our UniDetector behaves the strong zero-shot generalization ability on large-vocabulary datasets like LVIS, ImageNetBoxes, and VisualGenome - it surpasses the traditional supervised baselines by more than 4\% on average without seeing any corresponding images. On 13 public detection datasets with various scenes, UniDetector also achieves state-of-the-art performance with only a 3\% amount of training data.
PDF Accepted by CVPR2023

点此查看论文截图

CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation

Authors:Seokju Cho, Heeseong Shin, Sunghwan Hong, Seungjun An, Seungjun Lee, Anurag Arnab, Paul Hongsuck Seo, Seungryong Kim

Existing works on open-vocabulary semantic segmentation have utilized large-scale vision-language models, such as CLIP, to leverage their exceptional open-vocabulary recognition capabilities. However, the problem of transferring these capabilities learned from image-level supervision to the pixel-level task of segmentation and addressing arbitrary unseen categories at inference makes this task challenging. To address these issues, we aim to attentively relate objects within an image to given categories by leveraging relational information among class categories and visual semantics through aggregation, while also adapting the CLIP representations to the pixel-level task. However, we observe that direct optimization of the CLIP embeddings can harm its open-vocabulary capabilities. In this regard, we propose an alternative approach to optimize the image-text similarity map, i.e. the cost map, using a novel cost aggregation-based method. Our framework, namely CAT-Seg, achieves state-of-the-art performance across all benchmarks. We provide extensive ablation studies to validate our choices. Project page: https://ku-cvlab.github.io/CAT-Seg/.
PDF Project page: https://ku-cvlab.github.io/CAT-Seg/

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录