NeRF


2023-03-21 更新

Frequency-Modulated Point Cloud Rendering with Easy Editing

Authors:Yi Zhang, Xiaoyang Huang, Bingbing Ni, Teng Li, Wenjun Zhang

We develop an effective point cloud rendering pipeline for novel view synthesis, which enables high fidelity local detail reconstruction, real-time rendering and user-friendly editing. In the heart of our pipeline is an adaptive frequency modulation module called Adaptive Frequency Net (AFNet), which utilizes a hypernetwork to learn the local texture frequency encoding that is consecutively injected into adaptive frequency activation layers to modulate the implicit radiance signal. This mechanism improves the frequency expressive ability of the network with richer frequency basis support, only at a small computational budget. To further boost performance, a preprocessing module is also proposed for point cloud geometry optimization via point opacity estimation. In contrast to implicit rendering, our pipeline supports high-fidelity interactive editing based on point cloud manipulation. Extensive experimental results on NeRF-Synthetic, ScanNet, DTU and Tanks and Temples datasets demonstrate the superior performances achieved by our method in terms of PSNR, SSIM and LPIPS, in comparison to the state-of-the-art.
PDF Accepted by CVPR 2023

点此查看论文截图

NeRF-LOAM: Neural Implicit Representation for Large-Scale Incremental LiDAR Odometry and Mapping

Authors:Junyuan Deng, Xieyuanli Chen, Songpengcheng Xia, Zhen Sun, Guoqing Liu, Wenxian Yu, Ling Pei

Simultaneously odometry and mapping using LiDAR data is an important task for mobile systems to achieve full autonomy in large-scale environments. However, most existing LiDAR-based methods prioritize tracking quality over reconstruction quality. Although the recently developed neural radiance fields (NeRF) have shown promising advances in implicit reconstruction for indoor environments, the problem of simultaneous odometry and mapping for large-scale scenarios using incremental LiDAR data remains unexplored. To bridge this gap, in this paper, we propose a novel NeRF-based LiDAR odometry and mapping approach, NeRF-LOAM, consisting of three modules neural odometry, neural mapping, and mesh reconstruction. All these modules utilize our proposed neural signed distance function, which separates LiDAR points into ground and non-ground points to reduce Z-axis drift, optimizes odometry and voxel embeddings concurrently, and in the end generates dense smooth mesh maps of the environment. Moreover, this joint optimization allows our NeRF-LOAM to be pre-trained free and exhibit strong generalization abilities when applied to different environments. Extensive evaluations on three publicly available datasets demonstrate that our approach achieves state-of-the-art odometry and mapping performance, as well as a strong generalization in large-scale environments utilizing LiDAR data. Furthermore, we perform multiple ablation studies to validate the effectiveness of our network design. The implementation of our approach will be made available at https://github.com/JunyuanDeng/NeRF-LOAM.
PDF

点此查看论文截图

SKED: Sketch-guided Text-based 3D Editing

Authors:Aryan Mikaeili, Or Perel, Daniel Cohen-Or, Ali Mahdavi-Amiri

Text-to-image diffusion models are gradually introduced into computer graphics, recently enabling the development of Text-to-3D pipelines in an open domain. However, for interactive editing purposes, local manipulations of content through a simplistic textual interface can be arduous. Incorporating user guided sketches with Text-to-image pipelines offers users more intuitive control. Still, as state-of-the-art Text-to-3D pipelines rely on optimizing Neural Radiance Fields (NeRF) through gradients from arbitrary rendering views, conditioning on sketches is not straightforward. In this paper, we present SKED, a technique for editing 3D shapes represented by NeRFs. Our technique utilizes as few as two guiding sketches from different views to alter an existing neural field. The edited region respects the prompt semantics through a pre-trained diffusion model. To ensure the generated output adheres to the provided sketches, we propose novel loss functions to generate the desired edits while preserving the density and radiance of the base instance. We demonstrate the effectiveness of our proposed method through several qualitative and quantitative experiments.
PDF

点此查看论文截图

ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-real Novel View Synthesis via Contrastive Learning

Authors:Hao Yang, Lanqing Hong, Aoxue Li, Tianyang Hu, Zhenguo Li, Gim Hee Lee, Liwei Wang

Although many recent works have investigated generalizable NeRF-based novel view synthesis for unseen scenes, they seldom consider the synthetic-to-real generalization, which is desired in many practical applications. In this work, we first investigate the effects of synthetic data in synthetic-to-real novel view synthesis and surprisingly observe that models trained with synthetic data tend to produce sharper but less accurate volume densities. For pixels where the volume densities are correct, fine-grained details will be obtained. Otherwise, severe artifacts will be produced. To maintain the advantages of using synthetic data while avoiding its negative effects, we propose to introduce geometry-aware contrastive learning to learn multi-view consistent features with geometric constraints. Meanwhile, we adopt cross-view attention to further enhance the geometry perception of features by querying features across input views. Experiments demonstrate that under the synthetic-to-real setting, our method can render images with higher quality and better fine-grained details, outperforming existing generalizable novel view synthesis methods in terms of PSNR, SSIM, and LPIPS. When trained on real data, our method also achieves state-of-the-art results.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录