检测/分割/跟踪


2023-03-21 更新

CAPE: Camera View Position Embedding for Multi-View 3D Object Detection

Authors:Kaixin Xiong, Shi Gong, Xiaoqing Ye, Xiao Tan, Ji Wan, Errui Ding, Jingdong Wang, Xiang Bai

In this paper, we address the problem of detecting 3D objects from multi-view images. Current query-based methods rely on global 3D position embeddings (PE) to learn the geometric correspondence between images and 3D space. We claim that directly interacting 2D image features with global 3D PE could increase the difficulty of learning view transformation due to the variation of camera extrinsics. Thus we propose a novel method based on CAmera view Position Embedding, called CAPE. We form the 3D position embeddings under the local camera-view coordinate system instead of the global coordinate system, such that 3D position embedding is free of encoding camera extrinsic parameters. Furthermore, we extend our CAPE to temporal modeling by exploiting the object queries of previous frames and encoding the ego-motion for boosting 3D object detection. CAPE achieves state-of-the-art performance (61.0% NDS and 52.5% mAP) among all LiDAR-free methods on nuScenes dataset. Codes and models are available on \href{https://github.com/PaddlePaddle/Paddle3D}{Paddle3D} and \href{https://github.com/kaixinbear/CAPE}{PyTorch Implementation}.
PDF Accepted by CVPR2023. Code is available

点此查看论文截图

LossMix: Simplify and Generalize Mixup for Object Detection and Beyond

Authors:Thanh Vu, Baochen Sun, Bodi Yuan, Alex Ngai, Yueqi Li, Jan-Michael Frahm

The success of data mixing augmentations in image classification tasks has been well-received. However, these techniques cannot be readily applied to object detection due to challenges such as spatial misalignment, foreground/background distinction, and plurality of instances. To tackle these issues, we first introduce a novel conceptual framework called Supervision Interpolation, which offers a fresh perspective on interpolation-based augmentations by relaxing and generalizing Mixup. Building on this framework, we propose LossMix, a simple yet versatile and effective regularization that enhances the performance and robustness of object detectors and more. Our key insight is that we can effectively regularize the training on mixed data by interpolating their loss errors instead of ground truth labels. Empirical results on the PASCAL VOC and MS COCO datasets demonstrate that LossMix consistently outperforms currently popular mixing strategies. Furthermore, we design a two-stage domain mixing method that leverages LossMix to surpass Adaptive Teacher (CVPR 2022) and set a new state of the art for unsupervised domain adaptation.
PDF

点此查看论文截图

Identification of Novel Classes for Improving Few-Shot Object Detection

Authors:Zeyu Shangguan, Mohammad Rostami

Conventional training of deep neural networks requires a large number of the annotated image which is a laborious and time-consuming task, particularly for rare objects. Few-shot object detection (FSOD) methods offer a remedy by realizing robust object detection using only a few training samples per class. An unexplored challenge for FSOD is that instances from unlabeled novel classes that do not belong to the fixed set of training classes appear in the background. These objects behave similarly to label noise, leading to FSOD performance degradation. We develop a semi-supervised algorithm to detect and then utilize these unlabeled novel objects as positive samples during training to improve FSOD performance. Specifically, we propose a hierarchical ternary classification region proposal network (HTRPN) to localize the potential unlabeled novel objects and assign them new objectness labels. Our improved hierarchical sampling strategy for the region proposal network (RPN) also boosts the perception ability of the object detection model for large objects. Our experimental results indicate that our method is effective and outperforms the existing state-of-the-art (SOTA) FSOD methods.
PDF

点此查看论文截图

Vehicle-Infrastructure Cooperative 3D Object Detection via Feature Flow Prediction

Authors:Haibao Yu, Yingjuan Tang, Enze Xie, Jilei Mao, Jirui Yuan, Ping Luo, Zaiqing Nie

Cooperatively utilizing both ego-vehicle and infrastructure sensor data can significantly enhance autonomous driving perception abilities. However, temporal asynchrony and limited wireless communication in traffic environments can lead to fusion misalignment and impact detection performance. This paper proposes Feature Flow Net (FFNet), a novel cooperative detection framework that uses a feature flow prediction module to address these issues in vehicle-infrastructure cooperative 3D object detection. Rather than transmitting feature maps extracted from still-images, FFNet transmits feature flow, which leverages the temporal coherence of sequential infrastructure frames to predict future features and compensate for asynchrony. Additionally, we introduce a self-supervised approach to enable FFNet to generate feature flow with feature prediction ability. Experimental results demonstrate that our proposed method outperforms existing cooperative detection methods while requiring no more than 1/10 transmission cost of raw data on the DAIR-V2X dataset when temporal asynchrony exceeds 200$ms$. The code is available at \href{https://github.com/haibao-yu/FFNet-VIC3D}{https://github.com/haibao-yu/FFNet-VIC3D}.
PDF Under Review

点此查看论文截图

MECPformer: Multi-estimations Complementary Patch with CNN-Transformers for Weakly Supervised Semantic Segmentation

Authors:Chunmeng Liu, Guangyao Li, Yao Shen, Ruiqi Wang

The initial seed based on the convolutional neural network (CNN) for weakly supervised semantic segmentation always highlights the most discriminative regions but fails to identify the global target information. Methods based on transformers have been proposed successively benefiting from the advantage of capturing long-range feature representations. However, we observe a flaw regardless of the gifts based on the transformer. Given a class, the initial seeds generated based on the transformer may invade regions belonging to other classes. Inspired by the mentioned issues, we devise a simple yet effective method with Multi-estimations Complementary Patch (MECP) strategy and Adaptive Conflict Module (ACM), dubbed MECPformer. Given an image, we manipulate it with the MECP strategy at different epochs, and the network mines and deeply fuses the semantic information at different levels. In addition, ACM adaptively removes conflicting pixels and exploits the network self-training capability to mine potential target information. Without bells and whistles, our MECPformer has reached new state-of-the-art 72.0% mIoU on the PASCAL VOC 2012 and 42.4% on MS COCO 2014 dataset. The code is available at https://github.com/ChunmengLiu1/MECPformer.
PDF

点此查看论文截图

Weakly-Supervised Text Instance Segmentation

Authors:Xinyan Zu, Haiyang Yu, Bin Li, Xiangyang Que

Text segmentation is a challenging vision task with many downstream applications. Current text segmentation methods require pixel-level annotations, which are expensive in the cost of human labor and limited in application scenarios. In this paper, we take the first attempt to perform weakly-supervised text instance segmentation by bridging text recognition and text segmentation. The insight is that text recognition methods provide precise attention position of each text instance, and the attention location can feed to both a text adaptive refinement head (TAR) and a text segmentation head. Specifically, the proposed TAR generates pseudo labels by performing two-stage iterative refinement operations on the attention location to fit the accurate boundaries of the corresponding text instance. Meanwhile, the text segmentation head takes the rough attention location to predict segmentation masks which are supervised by the aforementioned pseudo labels. In addition, we design a mask-augmented contrastive learning by treating our segmentation result as an augmented version of the input text image, thus improving the visual representation and further enhancing the performance of both recognition and segmentation. The experimental results demonstrate that the proposed method significantly outperforms weakly-supervised instance segmentation methods on ICDAR13-FST (18.95$\%$ improvement) and TextSeg (17.80$\%$ improvement) benchmarks.
PDF

点此查看论文截图

VIMI: Vehicle-Infrastructure Multi-view Intermediate Fusion for Camera-based 3D Object Detection

Authors:Zhe Wang, Siqi Fan, Xiaoliang Huo, Tongda Xu, Yan Wang, Jingjing Liu, Yilun Chen, Ya-Qin Zhang

In autonomous driving, Vehicle-Infrastructure Cooperative 3D Object Detection (VIC3D) makes use of multi-view cameras from both vehicles and traffic infrastructure, providing a global vantage point with rich semantic context of road conditions beyond a single vehicle viewpoint. Two major challenges prevail in VIC3D: 1) inherent calibration noise when fusing multi-view images, caused by time asynchrony across cameras; 2) information loss when projecting 2D features into 3D space. To address these issues, We propose a novel 3D object detection framework, Vehicles-Infrastructure Multi-view Intermediate fusion (VIMI). First, to fully exploit the holistic perspectives from both vehicles and infrastructure, we propose a Multi-scale Cross Attention (MCA) module that fuses infrastructure and vehicle features on selective multi-scales to correct the calibration noise introduced by camera asynchrony. Then, we design a Camera-aware Channel Masking (CCM) module that uses camera parameters as priors to augment the fused features. We further introduce a Feature Compression (FC) module with channel and spatial compression blocks to reduce the size of transmitted features for enhanced efficiency. Experiments show that VIMI achieves 15.61% overall AP_3D and 21.44% AP_BEV on the new VIC3D dataset, DAIR-V2X-C, significantly outperforming state-of-the-art early fusion and late fusion methods with comparable transmission cost.
PDF 8 pages, 9 figures

点此查看论文截图

Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving

Authors:Yinpeng Dong, Caixin Kang, Jinlai Zhang, Zijian Zhu, Yikai Wang, Xiao Yang, Hang Su, Xingxing Wei, Jun Zhu

3D object detection is an important task in autonomous driving to perceive the surroundings. Despite the excellent performance, the existing 3D detectors lack the robustness to real-world corruptions caused by adverse weathers, sensor noises, etc., provoking concerns about the safety and reliability of autonomous driving systems. To comprehensively and rigorously benchmark the corruption robustness of 3D detectors, in this paper we design 27 types of common corruptions for both LiDAR and camera inputs considering real-world driving scenarios. By synthesizing these corruptions on public datasets, we establish three corruption robustness benchmarks — KITTI-C, nuScenes-C, and Waymo-C. Then, we conduct large-scale experiments on 24 diverse 3D object detection models to evaluate their corruption robustness. Based on the evaluation results, we draw several important findings, including: 1) motion-level corruptions are the most threatening ones that lead to significant performance drop of all models; 2) LiDAR-camera fusion models demonstrate better robustness; 3) camera-only models are extremely vulnerable to image corruptions, showing the indispensability of LiDAR point clouds. We release the benchmarks and codes at https://github.com/kkkcx/3D_Corruptions_AD. We hope that our benchmarks and findings can provide insights for future research on developing robust 3D object detection models.
PDF CVPR 2023

点此查看论文截图

Bimodal SegNet: Instance Segmentation Fusing Events and RGB Frames for Robotic Grasping

Authors:Sanket Kachole, Xiaoqian Huang, Fariborz Baghaei Naeini, Rajkumar Muthusamy, Dimitrios Makris, Yahya Zweiri

Object segmentation for robotic grasping under dynamic conditions often faces challenges such as occlusion, low light conditions, motion blur and object size variance. To address these challenges, we propose a Deep Learning network that fuses two types of visual signals, event-based data and RGB frame data. The proposed Bimodal SegNet network has two distinct encoders, one for each signal input and a spatial pyramidal pooling with atrous convolutions. Encoders capture rich contextual information by pooling the concatenated features at different resolutions while the decoder obtains sharp object boundaries. The evaluation of the proposed method undertakes five unique image degradation challenges including occlusion, blur, brightness, trajectory and scale variance on the Event-based Segmentation (ESD) Dataset. The evaluation results show a 6-10\% segmentation accuracy improvement over state-of-the-art methods in terms of mean intersection over the union and pixel accuracy. The model code is available at https://github.com/sanket0707/Bimodal-SegNet.git
PDF 8 Pages

点此查看论文截图

Augment and Criticize: Exploring Informative Samples for Semi-Supervised Monocular 3D Object Detection

Authors:Zhenyu Li, Zhipeng Zhang, Heng Fan, Yuan He, Ke Wang, Xianming Liu, Junjun Jiang

In this paper, we improve the challenging monocular 3D object detection problem with a general semi-supervised framework. Specifically, having observed that the bottleneck of this task lies in lacking reliable and informative samples to train the detector, we introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data for learning more robust detection models. In theAugment’ stage, we present the Augmentation-based Prediction aGgregation (APG), which aggregates detections from various automatically learned augmented views to improve the robustness of pseudo label generation. Since not all pseudo labels from APG are beneficially informative, the subsequent `Criticize’ phase is presented. In particular, we introduce the Critical Retraining Strategy (CRS) that, unlike simply filtering pseudo labels using a fixed threshold (e.g., classification score) as in 2D semi-supervised tasks, leverages a learnable network to evaluate the contribution of unlabeled images at different training timestamps. This way, the noisy samples prohibitive to model evolution could be effectively suppressed. To validate our framework, we apply it to MonoDLE and MonoFlex. The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI, showing its effectiveness and generality. Code and models will be released.
PDF

点此查看论文截图

Rethinking the backbone architecture for tiny object detection

Authors:Jinlai Ning, Haoyan Guan, Michael Spratling

Tiny object detection has become an active area of research because images with tiny targets are common in several important real-world scenarios. However, existing tiny object detection methods use standard deep neural networks as their backbone architecture. We argue that such backbones are inappropriate for detecting tiny objects as they are designed for the classification of larger objects, and do not have the spatial resolution to identify small targets. Specifically, such backbones use max-pooling or a large stride at early stages in the architecture. This produces lower resolution feature-maps that can be efficiently processed by subsequent layers. However, such low-resolution feature-maps do not contain information that can reliably discriminate tiny objects. To solve this problem we design ‘bottom-heavy’ versions of backbones that allocate more resources to processing higher-resolution features without introducing any additional computational burden overall. We also investigate if pre-training these backbones on images of appropriate size, using CIFAR100 and ImageNet32, can further improve performance on tiny object detection. Results on TinyPerson and WiderFace show that detectors with our proposed backbones achieve better results than the current state-of-the-art methods.
PDF

点此查看论文截图

Generative Semantic Segmentation

Authors:Jiaqi Chen, Jiachen Lu, Xiatian Zhu, Li Zhang

We present Generative Semantic Segmentation (GSS), a generative learning approach for semantic segmentation. Uniquely, we cast semantic segmentation as an image-conditioned mask generation problem. This is achieved by replacing the conventional per-pixel discriminative learning with a latent prior learning process. Specifically, we model the variational posterior distribution of latent variables given the segmentation mask. To that end, the segmentation mask is expressed with a special type of image (dubbed as maskige). This posterior distribution allows to generate segmentation masks unconditionally. To achieve semantic segmentation on a given image, we further introduce a conditioning network. It is optimized by minimizing the divergence between the posterior distribution of maskige (i.e., segmentation masks) and the latent prior distribution of input training images. Extensive experiments on standard benchmarks show that our GSS can perform competitively to prior art alternatives in the standard semantic segmentation setting, whilst achieving a new state of the art in the more challenging cross-domain setting.
PDF To appear at CVPR2023, code at http://github.com/fudan-zvg/GSS

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录