Few-Shot


2023-03-20 更新

Instance-Conditioned GAN Data Augmentation for Representation Learning

Authors:Pietro Astolfi, Arantxa Casanova, Jakob Verbeek, Pascal Vincent, Adriana Romero-Soriano, Michal Drozdzal

Data augmentation has become a crucial component to train state-of-the-art visual representation models. However, handcrafting combinations of transformations that lead to improved performances is a laborious task, which can result in visually unrealistic samples. To overcome these limitations, recent works have explored the use of generative models as learnable data augmentation tools, showing promising results in narrow application domains, e.g., few-shot learning and low-data medical imaging. In this paper, we introduce a data augmentation module, called DA_IC-GAN, which leverages instance-conditioned GAN generations and can be used off-the-shelf in conjunction with most state-of-the-art training recipes. We showcase the benefits of DA_IC-GAN by plugging it out-of-the-box into the supervised training of ResNets and DeiT models on the ImageNet dataset, and achieving accuracy boosts up to between 1%p and 2%p with the highest capacity models. Moreover, the learnt representations are shown to be more robust than the baselines when transferred to a handful of out-of-distribution datasets, and exhibit increased invariance to variations of instance and viewpoints. We additionally couple DA_IC-GAN with a self-supervised training recipe and show that we can also achieve an improvement of 1%p in accuracy in some settings. With this work, we strengthen the evidence on the potential of learnable data augmentations to improve visual representation learning, paving the road towards non-handcrafted augmentations in model training.
PDF TMLR reviews at https://openreview.net/forum?id=1n7q9mxG3T&referrer=%5BTMLR%5D(%2Fgroup%3Fid%3DTMLR)

点此查看论文截图

Video Action Recognition with Attentive Semantic Units

Authors:Yifei Chen, Dapeng Chen, Ruijin Liu, Hao Li, Wei Peng

Visual-Language Models (VLMs) have significantly advanced action video recognition. Supervised by the semantics of action labels, recent works adapt the visual branch of VLMs to learn video representations. Despite the effectiveness proved by these works, we believe that the potential of VLMs has yet to be fully harnessed. In light of this, we exploit the semantic units (SU) hiding behind the action labels and leverage their correlations with fine-grained items in frames for more accurate action recognition. SUs are entities extracted from the language descriptions of the entire action set, including body parts, objects, scenes, and motions. To further enhance the alignments between visual contents and the SUs, we introduce a multi-region module (MRA) to the visual branch of the VLM. The MRA allows the perception of region-aware visual features beyond the original global feature. Our method adaptively attends to and selects relevant SUs with visual features of frames. With a cross-modal decoder, the selected SUs serve to decode spatiotemporal video representations. In summary, the SUs as the medium can boost discriminative ability and transferability. Specifically, in fully-supervised learning, our method achieved 87.8\% top-1 accuracy on Kinetics-400. In K=2 few-shot experiments, our method surpassed the previous state-of-the-art by +7.1% and +15.0% on HMDB-51 and UCF-101, respectively.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录