NeRF


2023-03-16 更新

Harnessing Low-Frequency Neural Fields for Few-Shot View Synthesis

Authors:Liangchen Song, Zhong Li, Xuan Gong, Lele Chen, Zhang Chen, Yi Xu, Junsong Yuan

Neural Radiance Fields (NeRF) have led to breakthroughs in the novel view synthesis problem. Positional Encoding (P.E.) is a critical factor that brings the impressive performance of NeRF, where low-dimensional coordinates are mapped to high-dimensional space to better recover scene details. However, blindly increasing the frequency of P.E. leads to overfitting when the reconstruction problem is highly underconstrained, \eg, few-shot images for training. We harness low-frequency neural fields to regularize high-frequency neural fields from overfitting to better address the problem of few-shot view synthesis. We propose reconstructing with a low-frequency only field and then finishing details with a high-frequency equipped field. Unlike most existing solutions that regularize the output space (\ie, rendered images), our regularization is conducted in the input space (\ie, signal frequency). We further propose a simple-yet-effective strategy for tuning the frequency to avoid overfitting few-shot inputs: enforcing consistency among the frequency domain of rendered 2D images. Thanks to the input space regularizing scheme, our method readily applies to inputs beyond spatial locations, such as the time dimension in dynamic scenes. Comparisons with state-of-the-art on both synthetic and natural datasets validate the effectiveness of our proposed solution for few-shot view synthesis. Code is available at \href{https://github.com/lsongx/halo}{https://github.com/lsongx/halo}.
PDF

点此查看论文截图

RefiNeRF: Modelling dynamic neural radiance fields with inconsistent or missing camera parameters

Authors:Shuja Khalid, Frank Rudzicz

Novel view synthesis (NVS) is a challenging task in computer vision that involves synthesizing new views of a scene from a limited set of input images. Neural Radiance Fields (NeRF) have emerged as a powerful approach to address this problem, but they require accurate knowledge of camera \textit{intrinsic} and \textit{extrinsic} parameters. Traditionally, structure-from-motion (SfM) and multi-view stereo (MVS) approaches have been used to extract camera parameters, but these methods can be unreliable and may fail in certain cases. In this paper, we propose a novel technique that leverages unposed images from dynamic datasets, such as the NVIDIA dynamic scenes dataset, to learn camera parameters directly from data. Our approach is highly extensible and can be integrated into existing NeRF architectures with minimal modifications. We demonstrate the effectiveness of our method on a variety of static and dynamic scenes and show that it outperforms traditional SfM and MVS approaches. The code for our method is publicly available at \href{https://github.com/redacted/refinerf}{https://github.com/redacted/refinerf}. Our approach offers a promising new direction for improving the accuracy and robustness of NVS using NeRF, and we anticipate that it will be a valuable tool for a wide range of applications in computer vision and graphics.
PDF

点此查看论文截图

Re-ReND: Real-time Rendering of NeRFs across Devices

Authors:Sara Rojas, Jesus Zarzar, Juan Camilo Perez, Artsiom Sanakoyeu, Ali Thabet, Albert Pumarola, Bernard Ghanem

This paper proposes a novel approach for rendering a pre-trained Neural Radiance Field (NeRF) in real-time on resource-constrained devices. We introduce Re-ReND, a method enabling Real-time Rendering of NeRFs across Devices. Re-ReND is designed to achieve real-time performance by converting the NeRF into a representation that can be efficiently processed by standard graphics pipelines. The proposed method distills the NeRF by extracting the learned density into a mesh, while the learned color information is factorized into a set of matrices that represent the scene’s light field. Factorization implies the field is queried via inexpensive MLP-free matrix multiplications, while using a light field allows rendering a pixel by querying the field a single time-as opposed to hundreds of queries when employing a radiance field. Since the proposed representation can be implemented using a fragment shader, it can be directly integrated with standard rasterization frameworks. Our flexible implementation can render a NeRF in real-time with low memory requirements and on a wide range of resource-constrained devices, including mobiles and AR/VR headsets. Notably, we find that Re-ReND can achieve over a 2.6-fold increase in rendering speed versus the state-of-the-art without perceptible losses in quality.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录