2023-03-15 更新
A Contrastive Knowledge Transfer Framework for Model Compression and Transfer Learning
Authors:Kaiqi Zhao, Yitao Chen, Ming Zhao
Knowledge Transfer (KT) achieves competitive performance and is widely used for image classification tasks in model compression and transfer learning. Existing KT works transfer the information from a large model (“teacher”) to train a small model (“student”) by minimizing the difference of their conditionally independent output distributions. However, these works overlook the high-dimension structural knowledge from the intermediate representations of the teacher, which leads to limited effectiveness, and they are motivated by various heuristic intuitions, which makes it difficult to generalize. This paper proposes a novel Contrastive Knowledge Transfer Framework (CKTF), which enables the transfer of sufficient structural knowledge from the teacher to the student by optimizing multiple contrastive objectives across the intermediate representations between them. Also, CKTF provides a generalized agreement to existing KT techniques and increases their performance significantly by deriving them as specific cases of CKTF. The extensive evaluation shows that CKTF consistently outperforms the existing KT works by 0.04% to 11.59% in model compression and by 0.4% to 4.75% in transfer learning on various models and datasets.
PDF
点此查看论文截图
Medical Phrase Grounding with Region-Phrase Context Contrastive Alignment
Authors:Zhihao Chen, Yang Zhou, Anh Tran, Junting Zhao, Liang Wan, Gideon Ooi, Lionel Cheng, Choon Hua Thng, Xinxing Xu, Yong Liu, Huazhu Fu
Medical phrase grounding (MPG) aims to locate the most relevant region in a medical image, given a phrase query describing certain medical findings, which is an important task for medical image analysis and radiological diagnosis. However, existing visual grounding methods rely on general visual features for identifying objects in natural images and are not capable of capturing the subtle and specialized features of medical findings, leading to sub-optimal performance in MPG. In this paper, we propose MedRPG, an end-to-end approach for MPG. MedRPG is built on a lightweight vision-language transformer encoder and directly predicts the box coordinates of mentioned medical findings, which can be trained with limited medical data, making it a valuable tool in medical image analysis. To enable MedRPG to locate nuanced medical findings with better region-phrase correspondences, we further propose Tri-attention Context contrastive alignment (TaCo). TaCo seeks context alignment to pull both the features and attention outputs of relevant region-phrase pairs close together while pushing those of irrelevant regions far away. This ensures that the final box prediction depends more on its finding-specific regions and phrases. Experimental results on three MPG datasets demonstrate that our MedRPG outperforms state-of-the-art visual grounding approaches by a large margin. Additionally, the proposed TaCo strategy is effective in enhancing finding localization ability and reducing spurious region-phrase correlations.
PDF
点此查看论文截图
Meta contrastive label correction for financial time series
Authors:Luxuan Yang, Ting Gao, Min Dai, Yubin Lu, Wei Wei, Cheng Fang, Yufu Lan, Jinqiao Duan
Financial applications such as stock price forecasting, usually face an issue that under the predefined labeling rules, it is hard to accurately predict the directions of stock movement. This is because traditional ways of labeling, taking Triple Barrier Method, for example, usually gives us inaccurate or even corrupted labels. To address this issue, we focus on two main goals. One is that our proposed method can automatically generate correct labels for noisy time series patterns, while at the same time, the method is capable of boosting classification performance on this new labeled dataset. Based on the aforementioned goals, our approach has the following three novelties: First, we fuse a new contrastive learning algorithm into the meta-learning framework to estimate correct labels iteratively when updating the classification model inside. Moreover, we utilize images generated from time series data through Gramian angular field and representative learning. Most important of all, we adopt multi-task learning to forecast temporal-variant labels. In the experiments, we work on 6% clean data and the rest unlabeled data. It is shown that our method is competitive and outperforms a lot compared with benchmarks.
PDF