2023-03-15 更新
Iterative Next Boundary Detection for Instance Segmentation of Tree Rings in Microscopy Images of Shrub Cross Sections
Authors:Alexander Gillert, Giulia Resente, Alba Anadon-Rosell, Martin Wilmking, Uwe Freiherr von Lukas
We address the problem of detecting tree rings in microscopy images of shrub cross sections. This can be regarded as a special case of the instance segmentation task with several unique challenges such as the concentric circular ring shape of the objects and high precision requirements that result in inadequate performance of existing methods. We propose a new iterative method which we term Iterative Next Boundary Detection (INBD). It intuitively models the natural growth direction, starting from the center of the shrub cross section and detecting the next ring boundary in each iteration step. In our experiments, INBD shows superior performance to generic instance segmentation methods and is the only one with a built-in notion of chronological order. Our dataset and source code are available at http://github.com/alexander-g/INBD.
PDF CVPR 2023
点此查看论文截图
LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion
Authors:Xin Li, Tao Ma, Yuenan Hou, Botian Shi, Yuchen Yang, Youquan Liu, Xingjiao Wu, Qin Chen, Yikang Li, Yu Qiao, Liang He
LiDAR-camera fusion methods have shown impressive performance in 3D object detection. Recent advanced multi-modal methods mainly perform global fusion, where image features and point cloud features are fused across the whole scene. Such practice lacks fine-grained region-level information, yielding suboptimal fusion performance. In this paper, we present the novel Local-to-Global fusion network (LoGoNet), which performs LiDAR-camera fusion at both local and global levels. Concretely, the Global Fusion (GoF) of LoGoNet is built upon previous literature, while we exclusively use point centroids to more precisely represent the position of voxel features, thus achieving better cross-modal alignment. As to the Local Fusion (LoF), we first divide each proposal into uniform grids and then project these grid centers to the images. The image features around the projected grid points are sampled to be fused with position-decorated point cloud features, maximally utilizing the rich contextual information around the proposals. The Feature Dynamic Aggregation (FDA) module is further proposed to achieve information interaction between these locally and globally fused features, thus producing more informative multi-modal features. Extensive experiments on both Waymo Open Dataset (WOD) and KITTI datasets show that LoGoNet outperforms all state-of-the-art 3D detection methods. Notably, LoGoNet ranks 1st on Waymo 3D object detection leaderboard and obtains 81.02 mAPH (L2) detection performance. It is noteworthy that, for the first time, the detection performance on three classes surpasses 80 APH (L2) simultaneously. Code will be available at \url{https://github.com/sankin97/LoGoNet}.
PDF Accepted by CVPR2023
点此查看论文截图
Calibrated Teacher for Sparsely Annotated Object Detection
Authors:Haohan Wang, Liang Liu, Boshen Zhang, Jiangning Zhang, Wuhao Zhang, Zhenye Gan, Yabiao Wang, Chengjie Wang, Haoqian Wang
Fully supervised object detection requires training images in which all instances are annotated. This is actually impractical due to the high labor and time costs and the unavoidable missing annotations. As a result, the incomplete annotation in each image could provide misleading supervision and harm the training. Recent works on sparsely annotated object detection alleviate this problem by generating pseudo labels for the missing annotations. Such a mechanism is sensitive to the threshold of the pseudo label score. However, the effective threshold is different in different training stages and among different object detectors. Therefore, the current methods with fixed thresholds have sub-optimal performance, and are difficult to be applied to other detectors. In order to resolve this obstacle, we propose a Calibrated Teacher, of which the confidence estimation of the prediction is well calibrated to match its real precision. In this way, different detectors in different training stages would share a similar distribution of the output confidence, so that multiple detectors could share the same fixed threshold and achieve better performance. Furthermore, we present a simple but effective Focal IoU Weight (FIoU) for the classification loss. FIoU aims at reducing the loss weight of false negative samples caused by the missing annotation, and thus works as the complement of the teacher-student paradigm. Extensive experiments show that our methods set new state-of-the-art under all different sparse settings in COCO. Code will be available at https://github.com/Whileherham/CalibratedTeacher.
PDF
点此查看论文截图
PlanarTrack: A Large-scale Challenging Benchmark for Planar Object Tracking
Authors:Xinran Liu, Xiaoqiong Liu, Ziruo Yi, Xin Zhou, Thanh Le, Libo Zhang, Yan Huang, Qing Yang, Heng Fan
Planar object tracking is a critical computer vision problem and has drawn increasing interest owing to its key roles in robotics, augmented reality, etc. Despite rapid progress, its further development, especially in the deep learning era, is largely hindered due to the lack of large-scale challenging benchmarks. Addressing this, we introduce PlanarTrack, a large-scale challenging planar tracking benchmark. Specifically, PlanarTrack consists of 1,000 videos with more than 490K images. All these videos are collected in complex unconstrained scenarios from the wild, which makes PlanarTrack, compared with existing benchmarks, more challenging but realistic for real-world applications. To ensure the high-quality annotation, each frame in PlanarTrack is manually labeled using four corners with multiple-round careful inspection and refinement. To our best knowledge, PlanarTrack, to date, is the largest and most challenging dataset dedicated to planar object tracking. In order to analyze the proposed PlanarTrack, we evaluate 10 planar trackers and conduct comprehensive comparisons and in-depth analysis. Our results, not surprisingly, demonstrate that current top-performing planar trackers degenerate significantly on the challenging PlanarTrack and more efforts are needed to improve planar tracking in the future. In addition, we further derive a variant named PlanarTrack${\mathbf{BB}}$ for generic object tracking from PlanarTrack. Our evaluation of 10 excellent generic trackers on PlanarTrack${\mathrm{BB}}$ manifests that, surprisingly, PlanarTrack$_{\mathrm{BB}}$ is even more challenging than several popular generic tracking benchmarks and more attention should be paid to handle such planar objects, though they are rigid. All benchmarks and evaluations will be released at the project webpage.
PDF Tech. Report
点此查看论文截图
Co-Salient Object Detection with Co-Representation Purification
Authors:Ziyue Zhu, Zhao Zhang, Zheng Lin, Xing Sun, Ming-Ming Cheng
Co-salient object detection (Co-SOD) aims at discovering the common objects in a group of relevant images. Mining a co-representation is essential for locating co-salient objects. Unfortunately, the current Co-SOD method does not pay enough attention that the information not related to the co-salient object is included in the co-representation. Such irrelevant information in the co-representation interferes with its locating of co-salient objects. In this paper, we propose a Co-Representation Purification (CoRP) method aiming at searching noise-free co-representation. We search a few pixel-wise embeddings probably belonging to co-salient regions. These embeddings constitute our co-representation and guide our prediction. For obtaining purer co-representation, we use the prediction to iteratively reduce irrelevant embeddings in our co-representation. Experiments on three datasets demonstrate that our CoRP achieves state-of-the-art performances on the benchmark datasets. Our source code is available at https://github.com/ZZY816/CoRP.
PDF Accepted by TPAMI 2023
点此查看论文截图
LoG-CAN: local-global Class-aware Network for semantic segmentation of remote sensing images
Authors:Xiaowen Ma, Mengting Ma, Chenlu Hu, Zhiyuan Song, Ziyan Zhao, Tian Feng, Wei Zhang
Remote sensing images are known of having complex backgrounds, high intra-class variance and large variation of scales, which bring challenge to semantic segmentation. We present LoG-CAN, a multi-scale semantic segmentation network with a global class-aware (GCA) module and local class-aware (LCA) modules to remote sensing images. Specifically, the GCA module captures the global representations of class-wise context modeling to circumvent background interference; the LCA modules generate local class representations as intermediate aware elements, indirectly associating pixels with global class representations to reduce variance within a class; and a multi-scale architecture with GCA and LCA modules yields effective segmentation of objects at different scales via cascaded refinement and fusion of features. Through the evaluation on the ISPRS Vaihingen dataset and the ISPRS Potsdam dataset, experimental results indicate that LoG-CAN outperforms the state-of-the-art methods for general semantic segmentation, while significantly reducing network parameters and computation. Code is available at~\href{https://github.com/xwmaxwma/rssegmentation}{https://github.com/xwmaxwma/rssegmentation}.
PDF Accepted at ICASSP 2023
点此查看论文截图
Adaptive Rotated Convolution for Rotated Object Detection
Authors:Yifan Pu, Yiru Wang, Zhuofan Xia, Yizeng Han, Yulin Wang, Weihao Gan, Zidong Wang, Shiji Song, Gao Huang
Rotated object detection aims to identify and locate objects in images with arbitrary orientation. In this scenario, the oriented directions of objects vary considerably across different images, while multiple orientations of objects exist within an image. This intrinsic characteristic makes it challenging for standard backbone networks to extract high-quality features of these arbitrarily orientated objects. In this paper, we present Adaptive Rotated Convolution (ARC) module to handle the aforementioned challenges. In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images, and an efficient conditional computation mechanism is introduced to accommodate the large orientation variations of objects within an image. The two designs work seamlessly in rotated object detection problem. Moreover, ARC can conveniently serve as a plug-and-play module in various vision backbones to boost their representation ability to detect oriented objects accurately. Experiments on commonly used benchmarks (DOTA and HRSC2016) demonstrate that equipped with our proposed ARC module in the backbone network, the performance of multiple popular oriented object detectors is significantly improved (e.g. +3.03% mAP on Rotated RetinaNet and +4.16% on CFA). Combined with the highly competitive method Oriented R-CNN, the proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
PDF
点此查看论文截图
BoundaryCAM: A Boundary-based Refinement Framework for Weakly Supervised Semantic Segmentation of Medical Images
Authors:Bharath Srinivas Prabakaran, Erik Ostrowski, Muhammad Shafique
Weakly Supervised Semantic Segmentation (WSSS) with only image-level supervision is a promising approach to deal with the need for Segmentation networks, especially for generating a large number of pixel-wise masks in a given dataset. However, most state-of-the-art image-level WSSS techniques lack an understanding of the geometric features embedded in the images since the network cannot derive any object boundary information from just image-level labels. We define a boundary here as the line separating an object and its background, or two different objects. To address this drawback, we propose our novel BoundaryCAM framework, which deploys state-of-the-art class activation maps combined with various post-processing techniques in order to achieve fine-grained higher-accuracy segmentation masks. To achieve this, we investigate a state-of-the-art unsupervised semantic segmentation network that can be used to construct a boundary map, which enables BoundaryCAM to predict object locations with sharper boundaries. By applying our method to WSSS predictions, we were able to achieve up to 10% improvements even to the benefit of the current state-of-the-art WSSS methods for medical imaging. The framework is open-source and accessible online at https://github.com/bharathprabakaran/BoundaryCAM.
PDF
点此查看论文截图
DynaMask: Dynamic Mask Selection for Instance Segmentation
Authors:Ruihuang Li, Chenhang He, Shuai Li, Yabin Zhang, Lei Zhang
The representative instance segmentation methods mostly segment different object instances with a mask of the fixed resolution, e.g., 28*28 grid. However, a low-resolution mask loses rich details, while a high-resolution mask incurs quadratic computation overhead. It is a challenging task to predict the optimal binary mask for each instance. In this paper, we propose to dynamically select suitable masks for different object proposals. First, a dual-level Feature Pyramid Network (FPN) with adaptive feature aggregation is developed to gradually increase the mask grid resolution, ensuring high-quality segmentation of objects. Specifically, an efficient region-level top-down path (r-FPN) is introduced to incorporate complementary contextual and detailed information from different stages of image-level FPN (i-FPN). Then, to alleviate the increase of computation and memory costs caused by using large masks, we develop a Mask Switch Module (MSM) with negligible computational cost to select the most suitable mask resolution for each instance, achieving high efficiency while maintaining high segmentation accuracy. Without bells and whistles, the proposed method, namely DynaMask, brings consistent and noticeable performance improvements over other state-of-the-arts at a moderate computation overhead. The source code: https://github.com/lslrh/DynaMask.
PDF Accepted by CVPR2023
点此查看论文截图
Image Label based Semantic Segmentation Framework using Object Perimeters
Authors:Erik Ostrowski, Bharath Srinivas Prabakaran, Muhammad Shafique
Achieving high-quality semantic segmentation predictions using only image-level labels enables a new level of real-world applicability. Although state-of-the-art networks deliver reliable predictions, the amount of handcrafted pixel-wise annotations to enable these results are not feasible in many real-world applications. Hence, several works have already targeted this bottleneck, using classifier-based networks like Class Activation Maps (CAMs) as a base. Addressing CAM’s weaknesses of fuzzy borders and incomplete predictions, state-of-the-art approaches rely only on adding regulations to the classifier loss or using pixel-similarity-based refinement after the fact. We propose a framework that introduces an additional module using object perimeters for improved saliency. We define object perimeter information as the line separating the object and background. Our new PerimeterFit module will be applied to pre-refine the CAM predictions before using the pixel-similarity-based network. In this way, our PerimeterFit increases the quality of the CAM prediction while simultaneously improving the false negative rate. We investigated a wide range of state-of-the-art unsupervised semantic segmentation networks and edge detection techniques to create useful perimeter maps, which enable our framework to predict object locations with sharper perimeters. We achieved up to 1.5\% improvement over frameworks without our PerimeterFit module. We conduct an exhaustive analysis to illustrate that our framework enhances existing state-of-the-art frameworks for image-level-based semantic segmentation. The framework is open-source and accessible online at https://github.com/ErikOstrowski/Perimeter-based-Semantic-Segmentation.
PDF
点此查看论文截图
Automated Ensemble Search Framework for Semantic Segmentation Using Medical Imaging Labels
Authors:Erik Ostrowski, Bharath Srinivas Prabakaran, Muhammad Shafique
Reliable classification and detection of certain medical conditions, in images, with state-of-the-art semantic segmentation networks, require vast amounts of pixel-wise annotation. However, the public availability of such datasets is minimal. Therefore, semantic segmentation with image-level labels presents a promising alternative to this problem. Nevertheless, very few works have focused on evaluating this technique and its applicability to the medical sector. Due to their complexity and the small number of training examples in medical datasets, classifier-based weakly supervised networks like class activation maps (CAMs) struggle to extract useful information from them. However, most state-of-the-art approaches rely on them to achieve their improvements. Therefore, we propose a framework that can still utilize the low-quality CAM predictions of complicated datasets to improve the accuracy of our results. Our framework achieves that by first utilizing lower threshold CAMs to cover the target object with high certainty; second, by combining multiple low-threshold CAMs that even out their errors while highlighting the target object. We performed exhaustive experiments on the popular multi-modal BRATS and prostate DECATHLON segmentation challenge datasets. Using the proposed framework, we have demonstrated an improved dice score of up to 8% on BRATS and 6% on DECATHLON datasets compared to the previous state-of-the-art.
PDF
点此查看论文截图
AutoEnsemble: Automated Ensemble Search Framework for Semantic Segmentation Using Image Labels
Authors:Erik Ostrowski, Muhammad Shafique
A key bottleneck of employing state-of-the-art semantic segmentation networks in the real world is the availability of training labels. Standard semantic segmentation networks require massive pixel-wise annotated labels to reach state-of-the-art prediction quality. Hence, several works focus on semantic segmentation networks trained with only image-level annotations. However, when scrutinizing the state-of-the-art results in more detail, we notice that although they are very close to each other on average prediction quality, different approaches perform better in different classes while providing low quality in others. To address this problem, we propose a novel framework, AutoEnsemble, which employs an ensemble of the “pseudo-labels” for a given set of different segmentation techniques on a class-wise level. Pseudo-labels are the pixel-wise predictions of the image-level semantic segmentation frameworks used to train the final segmentation model. Our pseudo-labels seamlessly combine the strong points of multiple segmentation techniques approaches to reach superior prediction quality. We reach up to 2.4% improvement over AutoEnsemble’s components. An exhaustive analysis was performed to demonstrate AutoEnsemble’s effectiveness over state-of-the-art frameworks for image-level semantic segmentation.
PDF This paper is submitted to a IEEE conference for peer review publication
点此查看论文截图
PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D Object Detection
Authors:Anthony Chen, Kevin Zhang, Renrui Zhang, Zihan Wang, Yuheng Lu, Yandong Guo, Shanghang Zhang
Masked Autoencoders learn strong visual representations and achieve state-of-the-art results in several independent modalities, yet very few works have addressed their capabilities in multi-modality settings. In this work, we focus on point cloud and RGB image data, two modalities that are often presented together in the real world, and explore their meaningful interactions. To improve upon the cross-modal synergy in existing works, we propose PiMAE, a self-supervised pre-training framework that promotes 3D and 2D interaction through three aspects. Specifically, we first notice the importance of masking strategies between the two sources and utilize a projection module to complementarily align the mask and visible tokens of the two modalities. Then, we utilize a well-crafted two-branch MAE pipeline with a novel shared decoder to promote cross-modality interaction in the mask tokens. Finally, we design a unique cross-modal reconstruction module to enhance representation learning for both modalities. Through extensive experiments performed on large-scale RGB-D scene understanding benchmarks (SUN RGB-D and ScannetV2), we discover it is nontrivial to interactively learn point-image features, where we greatly improve multiple 3D detectors, 2D detectors, and few-shot classifiers by 2.9%, 6.7%, and 2.4%, respectively. Code is available at https://github.com/BLVLab/PiMAE.
PDF Accepted by CVPR2023. Code is available at https://github.com/BLVLab/PiMAE
点此查看论文截图
InstMove: Instance Motion for Object-centric Video Segmentation
Authors:Qihao Liu, Junfeng Wu, Yi Jiang, Xiang Bai, Alan Yuille, Song Bai
Despite significant efforts, cutting-edge video segmentation methods still remain sensitive to occlusion and rapid movement, due to their reliance on the appearance of objects in the form of object embeddings, which are vulnerable to these disturbances. A common solution is to use optical flow to provide motion information, but essentially it only considers pixel-level motion, which still relies on appearance similarity and hence is often inaccurate under occlusion and fast movement. In this work, we study the instance-level motion and present InstMove, which stands for Instance Motion for Object-centric Video Segmentation. In comparison to pixel-wise motion, InstMove mainly relies on instance-level motion information that is free from image feature embeddings, and features physical interpretations, making it more accurate and robust toward occlusion and fast-moving objects. To better fit in with the video segmentation tasks, InstMove uses instance masks to model the physical presence of an object and learns the dynamic model through a memory network to predict its position and shape in the next frame. With only a few lines of code, InstMove can be integrated into current SOTA methods for three different video segmentation tasks and boost their performance. Specifically, we improve the previous arts by 1.5 AP on OVIS dataset, which features heavy occlusions, and 4.9 AP on YouTubeVIS-Long dataset, which mainly contains fast-moving objects. These results suggest that instance-level motion is robust and accurate, and hence serving as a powerful solution in complex scenarios for object-centric video segmentation.
PDF Accepted to CVPR 2023