Domain Adaptation


2023-03-15 更新

Unsupervised Cumulative Domain Adaptation for Foggy Scene Optical Flow

Authors:Hanyu Zhou, Yi Chang, Wending Yan, Luxin Yan

Optical flow has achieved great success under clean scenes, but suffers from restricted performance under foggy scenes. To bridge the clean-to-foggy domain gap, the existing methods typically adopt the domain adaptation to transfer the motion knowledge from clean to synthetic foggy domain. However, these methods unexpectedly neglect the synthetic-to-real domain gap, and thus are erroneous when applied to real-world scenes. To handle the practical optical flow under real foggy scenes, in this work, we propose a novel unsupervised cumulative domain adaptation optical flow (UCDA-Flow) framework: depth-association motion adaptation and correlation-alignment motion adaptation. Specifically, we discover that depth is a key ingredient to influence the optical flow: the deeper depth, the inferior optical flow, which motivates us to design a depth-association motion adaptation module to bridge the clean-to-foggy domain gap. Moreover, we figure out that the cost volume correlation shares similar distribution of the synthetic and real foggy images, which enlightens us to devise a correlation-alignment motion adaptation module to distill motion knowledge of the synthetic foggy domain to the real foggy domain. Note that synthetic fog is designed as the intermediate domain. Under this unified framework, the proposed cumulative adaptation progressively transfers knowledge from clean scenes to real foggy scenes. Extensive experiments have been performed to verify the superiority of the proposed method.
PDF

点此查看论文截图

V2V4Real: A Real-world Large-scale Dataset for Vehicle-to-Vehicle Cooperative Perception

Authors:Runsheng Xu, Xin Xia, Jinlong Li, Hanzhao Li, Shuo Zhang, Zhengzhong Tu, Zonglin Meng, Hao Xiang, Xiaoyu Dong, Rui Song, Hongkai Yu, Bolei Zhou, Jiaqi Ma

Modern perception systems of autonomous vehicles are known to be sensitive to occlusions and lack the capability of long perceiving range. It has been one of the key bottlenecks that prevents Level 5 autonomy. Recent research has demonstrated that the Vehicle-to-Vehicle (V2V) cooperative perception system has great potential to revolutionize the autonomous driving industry. However, the lack of a real-world dataset hinders the progress of this field. To facilitate the development of cooperative perception, we present V2V4Real, the first large-scale real-world multi-modal dataset for V2V perception. The data is collected by two vehicles equipped with multi-modal sensors driving together through diverse scenarios. Our V2V4Real dataset covers a driving area of 410 km, comprising 20K LiDAR frames, 40K RGB frames, 240K annotated 3D bounding boxes for 5 classes, and HDMaps that cover all the driving routes. V2V4Real introduces three perception tasks, including cooperative 3D object detection, cooperative 3D object tracking, and Sim2Real domain adaptation for cooperative perception. We provide comprehensive benchmarks of recent cooperative perception algorithms on three tasks. The V2V4Real dataset and codebase can be found at https://github.com/ucla-mobility/V2V4Real.
PDF Accepted by CVPR2023. Code link: https://github.com/ucla-mobility/V2V4Real

点此查看论文截图

You Can Ground Earlier than See: An Effective and Efficient Pipeline for Temporal Sentence Grounding in Compressed Videos

Authors:Xiang Fang, Daizong Liu, Pan Zhou, Guoshun Nan

Given an untrimmed video, temporal sentence grounding (TSG) aims to locate a target moment semantically according to a sentence query. Although previous respectable works have made decent success, they only focus on high-level visual features extracted from the consecutive decoded frames and fail to handle the compressed videos for query modelling, suffering from insufficient representation capability and significant computational complexity during training and testing. In this paper, we pose a new setting, compressed-domain TSG, which directly utilizes compressed videos rather than fully-decompressed frames as the visual input. To handle the raw video bit-stream input, we propose a novel Three-branch Compressed-domain Spatial-temporal Fusion (TCSF) framework, which extracts and aggregates three kinds of low-level visual features (I-frame, motion vector and residual features) for effective and efficient grounding. Particularly, instead of encoding the whole decoded frames like previous works, we capture the appearance representation by only learning the I-frame feature to reduce delay or latency. Besides, we explore the motion information not only by learning the motion vector feature, but also by exploring the relations of neighboring frames via the residual feature. In this way, a three-branch spatial-temporal attention layer with an adaptive motion-appearance fusion module is further designed to extract and aggregate both appearance and motion information for the final grounding. Experiments on three challenging datasets shows that our TCSF achieves better performance than other state-of-the-art methods with lower complexity.
PDF Accepted by CVPR-23

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录