2023-03-14 更新
Unifying Vision, Text, and Layout for Universal Document Processing
Authors:Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal
We propose Universal Document Processing (UDOP), a foundation Document AI model which unifies text, image, and layout modalities together with varied task formats, including document understanding and generation. UDOP leverages the spatial correlation between textual content and document image to model image, text, and layout modalities with one uniform representation. With a novel Vision-Text-Layout Transformer, UDOP unifies pretraining and multi-domain downstream tasks into a prompt-based sequence generation scheme. UDOP is pretrained on both large-scale unlabeled document corpora using innovative self-supervised objectives and diverse labeled data. UDOP also learns to generate document images from text and layout modalities via masked image reconstruction. To the best of our knowledge, this is the first time in the field of document AI that one model simultaneously achieves high-quality neural document editing and content customization. Our method sets the state-of-the-art on 8 Document AI tasks, e.g., document understanding and QA, across diverse data domains like finance reports, academic papers, and websites. UDOP ranks first on the leaderboard of the Document Understanding Benchmark.
PDF CVPR 2023
点此查看论文截图
Fine-tuned CLIP Models are Efficient Video Learners
Authors:Hanoona Rasheed, Muhammad Uzair Khattak, Muhammad Maaz, Salman Khan, Fahad Shahbaz Khan
Large-scale multi-modal training with image-text pairs imparts strong generalization to CLIP model. Since training on a similar scale for videos is infeasible, recent approaches focus on the effective transfer of image-based CLIP to the video domain. In this pursuit, new parametric modules are added to learn temporal information and inter-frame relationships which require meticulous design efforts. Furthermore, when the resulting models are learned on videos, they tend to overfit on the given task distribution and lack in generalization aspect. This begs the following question: How to effectively transfer image-level CLIP representations to videos? In this work, we show that a simple Video Fine-tuned CLIP (ViFi-CLIP) baseline is generally sufficient to bridge the domain gap from images to videos. Our qualitative analysis illustrates that the frame-level processing from CLIP image-encoder followed by feature pooling and similarity matching with corresponding text embeddings helps in implicitly modeling the temporal cues within ViFi-CLIP. Such fine-tuning helps the model to focus on scene dynamics, moving objects and inter-object relationships. For low-data regimes where full fine-tuning is not viable, we propose a `bridge and prompt’ approach that first uses fine-tuning to bridge the domain gap and then learns prompts on language and vision side to adapt CLIP representations. We extensively evaluate this simple yet strong baseline on zero-shot, base-to-novel generalization, few-shot and fully supervised settings across five video benchmarks. Our code is available at https://github.com/muzairkhattak/ViFi-CLIP.
PDF Accepted at CVPR 2023
点此查看论文截图
Semi-supervised Hand Appearance Recovery via Structure Disentanglement and Dual Adversarial Discrimination
Authors:Zimeng Zhao, Binghui Zuo, Zhiyu Long, Yangang Wang
Enormous hand images with reliable annotations are collected through marker-based MoCap. Unfortunately, degradations caused by markers limit their application in hand appearance reconstruction. A clear appearance recovery insight is an image-to-image translation trained with unpaired data. However, most frameworks fail because there exists structure inconsistency from a degraded hand to a bare one. The core of our approach is to first disentangle the bare hand structure from those degraded images and then wrap the appearance to this structure with a dual adversarial discrimination (DAD) scheme. Both modules take full advantage of the semi-supervised learning paradigm: The structure disentanglement benefits from the modeling ability of ViT, and the translator is enhanced by the dual discrimination on both translation processes and translation results. Comprehensive evaluations have been conducted to prove that our framework can robustly recover photo-realistic hand appearance from diverse marker-contained and even object-occluded datasets. It provides a novel avenue to acquire bare hand appearance data for other downstream learning problems.The codes will be publicly available at https://www.yangangwang.com
PDF Accepted by CVPR2023
点此查看论文截图
Pretrained ViTs Yield Versatile Representations For Medical Images
Authors:Christos Matsoukas, Johan Fredin Haslum, Magnus Söderberg, Kevin Smith
Convolutional Neural Networks (CNNs) have reigned for a decade as the de facto approach to automated medical image diagnosis, pushing the state-of-the-art in classification, detection and segmentation tasks. Over the last years, vision transformers (ViTs) have appeared as a competitive alternative to CNNs, yielding impressive levels of performance in the natural image domain, while possessing several interesting properties that could prove beneficial for medical imaging tasks. In this work, we explore the benefits and drawbacks of transformer-based models for medical image classification. We conduct a series of experiments on several standard 2D medical image benchmark datasets and tasks. Our findings show that, while CNNs perform better if trained from scratch, off-the-shelf vision transformers can perform on par with CNNs when pretrained on ImageNet, both in a supervised and self-supervised setting, rendering them as a viable alternative to CNNs.
PDF Extended version of “Is it Time to Replace CNNs with Transformers for Medical Images?” (Matsoukas et al. 2022) originally published at the ICCV 2021 Workshop on Computer Vision for Automated Medical Diagnosis