GAN


2023-03-14 更新

Get3DHuman: Lifting StyleGAN-Human into a 3D Generative Model using Pixel-aligned Reconstruction Priors

Authors:Zhangyang Xiong, Di Kang, Derong Jin, Weikai Chen, Linchao Bao, Shuguang Cui, Xiaoguang Han

Fast generation of high-quality 3D digital humans is important to a vast number of applications ranging from entertainment to professional concerns. Recent advances in differentiable rendering have enabled the training of 3D generative models without requiring 3D ground truths. However, the quality of the generated 3D humans still has much room to improve in terms of both fidelity and diversity. In this paper, we present Get3DHuman, a novel 3D human framework that can significantly boost the realism and diversity of the generated outcomes by only using a limited budget of 3D ground-truth data. Our key observation is that the 3D generator can profit from human-related priors learned through 2D human generators and 3D reconstructors. Specifically, we bridge the latent space of Get3DHuman with that of StyleGAN-Human via a specially-designed prior network, where the input latent code is mapped to the shape and texture feature volumes spanned by the pixel-aligned 3D reconstructor. The outcomes of the prior network are then leveraged as the supervisory signals for the main generator network. To ensure effective training, we further propose three tailored losses applied to the generated feature volumes and the intermediate feature maps. Extensive experiments demonstrate that Get3DHuman greatly outperforms the other state-of-the-art approaches and can support a wide range of applications including shape interpolation, shape re-texturing, and single-view reconstruction through latent inversion.
PDF

点此查看论文截图

DeltaEdit: Exploring Text-free Training for Text-Driven Image Manipulation

Authors:Yueming Lyu, Tianwei Lin, Fu Li, Dongliang He, Jing Dong, Tieniu Tan

Text-driven image manipulation remains challenging in training or inference flexibility. Conditional generative models depend heavily on expensive annotated training data. Meanwhile, recent frameworks, which leverage pre-trained vision-language models, are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. In this work, we propose a novel framework named \textit{DeltaEdit} to address these problems. Our key idea is to investigate and identify a space, namely delta image and text space that has well-aligned distribution between CLIP visual feature differences of two images and CLIP textual embedding differences of source and target texts. Based on the CLIP delta space, the DeltaEdit network is designed to map the CLIP visual features differences to the editing directions of StyleGAN at training phase. Then, in inference phase, DeltaEdit predicts the StyleGAN’s editing directions from the differences of the CLIP textual features. In this way, DeltaEdit is trained in a text-free manner. Once trained, it can well generalize to various text prompts for zero-shot inference without bells and whistles. Code is available at https://github.com/Yueming6568/DeltaEdit.
PDF Accepted by CVPR2023. Code is available at https://github.com/Yueming6568/DeltaEdit

点此查看论文截图

SDF-3DGAN: A 3D Object Generative Method Based on Implicit Signed Distance Function

Authors:Lutao Jiang, Ruyi Ji, Libo Zhang

In this paper, we develop a new method, termed SDF-3DGAN, for 3D object generation and 3D-Aware image synthesis tasks, which introduce implicit Signed Distance Function (SDF) as the 3D object representation method in the generative field. We apply SDF for higher quality representation of 3D object in space and design a new SDF neural renderer, which has higher efficiency and higher accuracy. To train only on 2D images, we first generate the objects, which are represented by SDF, from Gaussian distribution. Then we render them to 2D images and use them to apply GAN training method together with 2D images in the dataset. In the new rendering method, we relieve all the potential of SDF mathematical property to alleviate computation pressure in the previous SDF neural renderer. In specific, our new SDF neural renderer can solve the problem of sampling ambiguity when the number of sampling point is not enough, \ie use the less points to finish higher quality sampling task in the rendering pipeline. And in this rendering pipeline, we can locate the surface easily. Therefore, we apply normal loss on it to control the smoothness of generated object surface, which can make our method enjoy the much higher generation quality. Quantitative and qualitative experiments conducted on public benchmarks demonstrate favorable performance against the state-of-the-art methods in 3D object generation task and 3D-Aware image synthesis task. Our codes will be released at https://github.com/lutao2021/SDF-3DGAN.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录