Few-Shot


2023-03-13 更新

Iterative Few-shot Semantic Segmentation from Image Label Text

Authors:Haohan Wang, Liang Liu, Wuhao Zhang, Jiangning Zhang, Zhenye Gan, Yabiao Wang, Chengjie Wang, Haoqian Wang

Few-shot semantic segmentation aims to learn to segment unseen class objects with the guidance of only a few support images. Most previous methods rely on the pixel-level label of support images. In this paper, we focus on a more challenging setting, in which only the image-level labels are available. We propose a general framework to firstly generate coarse masks with the help of the powerful vision-language model CLIP, and then iteratively and mutually refine the mask predictions of support and query images. Extensive experiments on PASCAL-5i and COCO-20i datasets demonstrate that our method not only outperforms the state-of-the-art weakly supervised approaches by a significant margin, but also achieves comparable or better results to recent supervised methods. Moreover, our method owns an excellent generalization ability for the images in the wild and uncommon classes. Code will be available at https://github.com/Whileherham/IMR-HSNet.
PDF ijcai 2022

点此查看论文截图

Boosting Semi-Supervised Few-Shot Object Detection with SoftER Teacher

Authors:Phi Vu Tran

Few-shot object detection is an emerging problem aimed at detecting novel concepts from few exemplars. Existing approaches to few-shot detection assume abundant base labels to adapt to novel objects. This paper explores the task of semi-supervised few-shot detection by considering a realistic scenario which lacks abundant labels for both base and novel objects. Motivated by this unique problem, we introduce SoftER Teacher, a robust detector combining the advantages of pseudo-labeling with representation learning on region proposals. SoftER Teacher harnesses unlabeled data to jointly optimize for semi-supervised few-shot detection without explicitly relying on abundant base labels. Extensive experiments show that SoftER Teacher matches the novel class performance of a strong supervised detector using only 10% of base labels. Our work also sheds insight into a previously unknown relationship between semi-supervised and few-shot detection to suggest that a stronger semi-supervised detector leads to a more label-efficient few-shot detector. Code and models are available at https://github.com/lexisnexis-risk-open-source/ledetection
PDF Technical Report

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录