Diffusion Models


2023-03-13 更新

EHRDiff: Exploring Realistic EHR Synthesis with Diffusion Models

Authors:Hongyi Yuan, Songchi Zhou, Sheng Yu

Electronic health records (EHR) contain vast biomedical knowledge and are rich resources for developing precise medicine systems. However, due to privacy concerns, there are limited high-quality EHR data accessible to researchers hence hindering the advancement of methodologies. Recent research has explored using generative modelling methods to synthesize realistic EHR data, and most proposed methods are based on the generative adversarial network (GAN) and its variants for EHR synthesis. Although GAN-style methods achieved state-of-the-art performance in generating high-quality EHR data, such methods are hard to train and prone to mode collapse. Diffusion models are recently proposed generative modelling methods and set cutting-edge performance in image generation. The performance of diffusion models in realistic EHR synthesis is rarely explored. In this work, we explore whether the superior performance of diffusion models can translate to the domain of EHR synthesis and propose a novel EHR synthesis method named EHRDiff. Through comprehensive experiments, EHRDiff achieves new state-of-the-art performance for the quality of synthetic EHR data and can better protect private information in real training EHRs in the meanwhile.
PDF Working in progress

点此查看论文截图

Fast Diffusion Sampler for Inverse Problems by Geometric Decomposition

Authors:Hyungjin Chung, Suhyeon Lee, Jong Chul Ye

Diffusion models have shown exceptional performance in solving inverse problems. However, one major limitation is the slow inference time. While faster diffusion samplers have been developed for unconditional sampling, there has been limited research on conditional sampling in the context of inverse problems. In this study, we propose a novel and efficient diffusion sampling strategy that employs the geometric decomposition of diffusion sampling. Specifically, we discover that the samples generated from diffusion models can be decomposed into two orthogonal components: a denoised" component obtained by projecting the sample onto the clean data manifold, and anoise” component that induces a transition to the next lower-level noisy manifold with the addition of stochastic noise. Furthermore, we prove that, under some conditions on the clean data manifold, the conjugate gradient update for imposing conditioning from the denoised signal belongs to the clean manifold, resulting in a much faster and more accurate diffusion sampling. Our method is applicable regardless of the parameterization and setting (i.e., VE, VP). Notably, we achieve state-of-the-art reconstruction quality on challenging real-world medical inverse imaging problems, including multi-coil MRI reconstruction and 3D CT reconstruction. Moreover, our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
PDF 21 pages

点此查看论文截图

TrojDiff: Trojan Attacks on Diffusion Models with Diverse Targets

Authors:Weixin Chen, Dawn Song, Bo Li

Diffusion models have achieved great success in a range of tasks, such as image synthesis and molecule design. As such successes hinge on large-scale training data collected from diverse sources, the trustworthiness of these collected data is hard to control or audit. In this work, we aim to explore the vulnerabilities of diffusion models under potential training data manipulations and try to answer: How hard is it to perform Trojan attacks on well-trained diffusion models? What are the adversarial targets that such Trojan attacks can achieve? To answer these questions, we propose an effective Trojan attack against diffusion models, TrojDiff, which optimizes the Trojan diffusion and generative processes during training. In particular, we design novel transitions during the Trojan diffusion process to diffuse adversarial targets into a biased Gaussian distribution and propose a new parameterization of the Trojan generative process that leads to an effective training objective for the attack. In addition, we consider three types of adversarial targets: the Trojaned diffusion models will always output instances belonging to a certain class from the in-domain distribution (In-D2D attack), out-of-domain distribution (Out-D2D-attack), and one specific instance (D2I attack). We evaluate TrojDiff on CIFAR-10 and CelebA datasets against both DDPM and DDIM diffusion models. We show that TrojDiff always achieves high attack performance under different adversarial targets using different types of triggers, while the performance in benign environments is preserved. The code is available at https://github.com/chenweixin107/TrojDiff.
PDF CVPR2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录