Open-Set


2023-03-10 更新

Improving Open-Set Semi-Supervised Learning with Self-Supervision

Authors:Erik Wallin, Lennart Svensson, Fredrik Kahl, Lars Hammarstrand

Open-set semi-supervised learning (OSSL) is a realistic setting of semi-supervised learning where the unlabeled training set contains classes that are not present in the labeled set. Many existing OSSL methods assume that these out-of-distribution data are harmful and put effort into excluding data from unknown classes from the training objective. In contrast, we propose an OSSL framework that facilitates learning from all unlabeled data through self-supervision. Additionally, we utilize an energy-based score to accurately recognize data belonging to the known classes, making our method well-suited for handling uncurated data in deployment. We show through extensive experimental evaluations on several datasets that our method shows overall unmatched robustness and performance in terms of closed-set accuracy and open-set recognition compared with state-of-the-art for OSSL. Our code will be released upon publication.
PDF Preprint

点此查看论文截图

Imbalanced Open Set Domain Adaptation via Moving-threshold Estimation and Gradual Alignment

Authors:Jinghan Ru, Jun Tian, Zhekai Du, Chengwei Xiao, Jingjing Li, Heng Tao Shen

Multimedia applications are often associated with cross-domain knowledge transfer, where Unsupervised Domain Adaptation (UDA) can be used to reduce the domain shifts. Open Set Domain Adaptation (OSDA) aims to transfer knowledge from a well-labeled source domain to an unlabeled target domain under the assumption that the target domain contains unknown classes. Existing OSDA methods consistently lay stress on the covariate shift, ignoring the potential label shift problem. The performance of OSDA methods degrades drastically under intra-domain class imbalance and inter-domain label shift. However, little attention has been paid to this issue in the community. In this paper, the Imbalanced Open Set Domain Adaptation (IOSDA) is explored where the covariate shift, label shift and category mismatch exist simultaneously. To alleviate the negative effects raised by label shift in OSDA, we propose Open-set Moving-threshold Estimation and Gradual Alignment (OMEGA) - a novel architecture that improves existing OSDA methods on class-imbalanced data. Specifically, a novel unknown-aware target clustering scheme is proposed to form tight clusters in the target domain to reduce the negative effects of label shift and intra-domain class imbalance. Furthermore, moving-threshold estimation is designed to generate specific thresholds for each target sample rather than using one for all. Extensive experiments on IOSDA, OSDA and OPDA benchmarks demonstrate that our method could significantly outperform existing state-of-the-arts. Code and data are available at https://github.com/mendicant04/OMEGA.
PDF 11 pages, 5 figures, 7 tables

点此查看论文截图

R-Tuning: Regularized Prompt Tuning in Open-Set Scenarios

Authors:Ning Liao, Xiaopeng Zhang, Min Cao, Qi Tian, Junchi Yan

In realistic open-set scenarios where labels of a part of testing data are totally unknown, current prompt methods on vision-language (VL) models always predict the unknown classes as the downstream training classes. The exhibited label bias causes difficulty in the open set recognition (OSR), by which an image should be correctly predicted as one of the known classes or the unknown one. To learn prompts in open-set scenarios, we propose the Regularized prompt Tuning (R-Tuning) to mitigate the label bias. It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more. Thus, prompts are tuned in a simulated open-set scenario. Besides, inspired by the observation that classifying directly on large datasets causes a much higher false positive rate than on small datasets, we propose the Combinatorial Tuning and Testing (CTT) strategy for improving performance. CTT decomposes R-Tuning on large datasets as multiple independent group-wise tuning on fewer classes, then makes comprehensive predictions by selecting the optimal sub-prompt. For fair comparisons, we construct new baselines for OSR based on VL models, especially for prompt methods. Our method achieves the best results on datasets with various scales. Extensive ablation studies validate the effectiveness of our method.
PDF

点此查看论文截图

Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection

Authors:Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang

In this paper, we present an open-set object detector, called Grounding DINO, by marrying Transformer-based detector DINO with grounded pre-training, which can detect arbitrary objects with human inputs such as category names or referring expressions. The key solution of open-set object detection is introducing language to a closed-set detector for open-set concept generalization. To effectively fuse language and vision modalities, we conceptually divide a closed-set detector into three phases and propose a tight fusion solution, which includes a feature enhancer, a language-guided query selection, and a cross-modality decoder for cross-modality fusion. While previous works mainly evaluate open-set object detection on novel categories, we propose to also perform evaluations on referring expression comprehension for objects specified with attributes. Grounding DINO performs remarkably well on all three settings, including benchmarks on COCO, LVIS, ODinW, and RefCOCO/+/g. Grounding DINO achieves a $52.5$ AP on the COCO detection zero-shot transfer benchmark, i.e., without any training data from COCO. It sets a new record on the ODinW zero-shot benchmark with a mean $26.1$ AP. Code will be available at \url{https://github.com/IDEA-Research/GroundingDINO}.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录