2023-03-10 更新
Optimization-Based Eye Tracking using Deflectometric Information
Authors:Tianfu Wang, Jiazhang Wang, Oliver Cossairt, Florian Willomitzer
Eye tracking is an important tool with a wide range of applications in Virtual, Augmented, and Mixed Reality (VR/AR/MR) technologies. State-of-the-art eye tracking methods are either reflection-based and track reflections of sparse point light sources, or image-based and exploit 2D features of the acquired eye image. In this work, we attempt to significantly improve reflection-based methods by utilizing pixel-dense deflectometric surface measurements in combination with optimization-based inverse rendering algorithms. Utilizing the known geometry of our deflectometric setup, we develop a differentiable rendering pipeline based on PyTorch3D that simulates a virtual eye under screen illumination. Eventually, we exploit the image-screen-correspondence information from the captured measurements to find the eye’s rotation, translation, and shape parameters with our renderer via gradient descent. In general, our method does not require a specific pattern and can work with ordinary video frames of the main VR/AR/MR screen itself. We demonstrate real-world experiments with evaluated mean relative gaze errors below 0.45 degrees at a precision better than 0.11 degrees. Moreover, we show an improvement of 6X over a representative reflection-based state-of-the-art method in simulation.
PDF
点此查看论文截图
Generative Model-Based Attack on Learnable Image Encryption for Privacy-Preserving Deep Learning
Authors:AprilPyone MaungMaung, Hitoshi Kiya
In this paper, we propose a novel generative model-based attack on learnable image encryption methods proposed for privacy-preserving deep learning. Various learnable encryption methods have been studied to protect the sensitive visual information of plain images, and some of them have been investigated to be robust enough against all existing attacks. However, previous attacks on image encryption focus only on traditional cryptanalytic attacks or reverse translation models, so these attacks cannot recover any visual information if a block-scrambling encryption step, which effectively destroys global information, is applied. Accordingly, in this paper, generative models are explored to evaluate whether such models can restore sensitive visual information from encrypted images for the first time. We first point out that encrypted images have some similarity with plain images in the embedding space. By taking advantage of leaked information from encrypted images, we propose a guided generative model as an attack on learnable image encryption to recover personally identifiable visual information. We implement the proposed attack in two ways by utilizing two state-of-the-art generative models: a StyleGAN-based model and latent diffusion-based one. Experiments were carried out on the CelebA-HQ and ImageNet datasets. Results show that images reconstructed by the proposed method have perceptual similarities to plain images.
PDF arXiv admin note: text overlap with arXiv:2209.07953