Domain Adaptation


2023-03-10 更新

Imbalanced Open Set Domain Adaptation via Moving-threshold Estimation and Gradual Alignment

Authors:Jinghan Ru, Jun Tian, Zhekai Du, Chengwei Xiao, Jingjing Li, Heng Tao Shen

Multimedia applications are often associated with cross-domain knowledge transfer, where Unsupervised Domain Adaptation (UDA) can be used to reduce the domain shifts. Open Set Domain Adaptation (OSDA) aims to transfer knowledge from a well-labeled source domain to an unlabeled target domain under the assumption that the target domain contains unknown classes. Existing OSDA methods consistently lay stress on the covariate shift, ignoring the potential label shift problem. The performance of OSDA methods degrades drastically under intra-domain class imbalance and inter-domain label shift. However, little attention has been paid to this issue in the community. In this paper, the Imbalanced Open Set Domain Adaptation (IOSDA) is explored where the covariate shift, label shift and category mismatch exist simultaneously. To alleviate the negative effects raised by label shift in OSDA, we propose Open-set Moving-threshold Estimation and Gradual Alignment (OMEGA) - a novel architecture that improves existing OSDA methods on class-imbalanced data. Specifically, a novel unknown-aware target clustering scheme is proposed to form tight clusters in the target domain to reduce the negative effects of label shift and intra-domain class imbalance. Furthermore, moving-threshold estimation is designed to generate specific thresholds for each target sample rather than using one for all. Extensive experiments on IOSDA, OSDA and OPDA benchmarks demonstrate that our method could significantly outperform existing state-of-the-arts. Code and data are available at https://github.com/mendicant04/OMEGA.
PDF 11 pages, 5 figures, 7 tables

点此查看论文截图

You Only Crash Once: Improved Object Detection for Real-Time, Sim-to-Real Hazardous Terrain Detection and Classification for Autonomous Planetary Landings

Authors:Timothy Chase Jr, Chris Gnam, John Crassidis, Karthik Dantu

The detection of hazardous terrain during the planetary landing of spacecraft plays a critical role in assuring vehicle safety and mission success. A cheap and effective way of detecting hazardous terrain is through the use of visual cameras, which ensure operational ability from atmospheric entry through touchdown. Plagued by resource constraints and limited computational power, traditional techniques for visual hazardous terrain detection focus on template matching and registration to pre-built hazard maps. Although successful on previous missions, this approach is restricted to the specificity of the templates and limited by the fidelity of the underlying hazard map, which both require extensive pre-flight cost and effort to obtain and develop. Terrestrial systems that perform a similar task in applications such as autonomous driving utilize state-of-the-art deep learning techniques to successfully localize and classify navigation hazards. Advancements in spacecraft co-processors aimed at accelerating deep learning inference enable the application of these methods in space for the first time. In this work, we introduce You Only Crash Once (YOCO), a deep learning-based visual hazardous terrain detection and classification technique for autonomous spacecraft planetary landings. Through the use of unsupervised domain adaptation we tailor YOCO for training by simulation, removing the need for real-world annotated data and expensive mission surveying phases. We further improve the transfer of representative terrain knowledge between simulation and the real world through visual similarity clustering. We demonstrate the utility of YOCO through a series of terrestrial and extraterrestrial simulation-to-real experiments and show substantial improvements toward the ability to both detect and accurately classify instances of planetary terrain.
PDF To be published in proceedings of AAS/AIAA Astrodynamics Specialist Conference 2022

点此查看论文截图

Contrastive Model Adaptation for Cross-Condition Robustness in Semantic Segmentation

Authors:David Bruggemann, Christos Sakaridis, Tim Brödermann, Luc Van Gool

Standard unsupervised domain adaptation methods adapt models from a source to a target domain using labeled source data and unlabeled target data jointly. In model adaptation, on the other hand, access to the labeled source data is prohibited, i.e., only the source-trained model and unlabeled target data are available. We investigate normal-to-adverse condition model adaptation for semantic segmentation, whereby image-level correspondences are available in the target domain. The target set consists of unlabeled pairs of adverse- and normal-condition street images taken at GPS-matched locations. Our method — CMA — leverages such image pairs to learn condition-invariant features via contrastive learning. In particular, CMA encourages features in the embedding space to be grouped according to their condition-invariant semantic content and not according to the condition under which respective inputs are captured. To obtain accurate cross-domain semantic correspondences, we warp the normal image to the viewpoint of the adverse image and leverage warp-confidence scores to create robust, aggregated features. With this approach, we achieve state-of-the-art semantic segmentation performance for model adaptation on several normal-to-adverse adaptation benchmarks, such as ACDC and Dark Zurich. We also evaluate CMA on a newly procured adverse-condition generalization benchmark and report favorable results compared to standard unsupervised domain adaptation methods, despite the comparative handicap of CMA due to source data inaccessibility. Code is available at https://github.com/brdav/cma.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录