Diffusion Models


2023-03-10 更新

Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models

Authors:Jiarui Xu, Sifei Liu, Arash Vahdat, Wonmin Byeon, Xiaolong Wang, Shalini De Mello

We present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies pre-trained text-image diffusion and discriminative models to perform open-vocabulary panoptic segmentation. Text-to-image diffusion models have shown the remarkable capability of generating high-quality images with diverse open-vocabulary language descriptions. This demonstrates that their internal representation space is highly correlated with open concepts in the real world. Text-image discriminative models like CLIP, on the other hand, are good at classifying images into open-vocabulary labels. We propose to leverage the frozen representation of both these models to perform panoptic segmentation of any category in the wild. Our approach outperforms the previous state of the art by significant margins on both open-vocabulary panoptic and semantic segmentation tasks. In particular, with COCO training only, our method achieves 23.4 PQ and 30.0 mIoU on the ADE20K dataset, with 8.3 PQ and 7.9 mIoU absolute improvement over the previous state-of-the-art. Project page is available at https://jerryxu.net/ODISE .
PDF CVPR 2023. Project page: https://jerryxu.net/ODISE

点此查看论文截图

DiffusionDepth: Diffusion Denoising Approach for Monocular Depth Estimation

Authors:Yiqun Duan, Xianda Guo, Zheng Zhu

Monocular depth estimation is a challenging task that predicts the pixel-wise depth from a single 2D image. Current methods typically model this problem as a regression or classification task. We propose DiffusionDepth, a new approach that reformulates monocular depth estimation as a denoising diffusion process. It learns an iterative denoising process to `denoise’ random depth distribution into a depth map with the guidance of monocular visual conditions. The process is performed in the latent space encoded by a dedicated depth encoder and decoder. Instead of diffusing ground truth (GT) depth, the model learns to reverse the process of diffusing the refined depth of itself into random depth distribution. This self-diffusion formulation overcomes the difficulty of applying generative models to sparse GT depth scenarios. The proposed approach benefits this task by refining depth estimation step by step, which is superior for generating accurate and highly detailed depth maps. Experimental results on KITTI and NYU-Depth-V2 datasets suggest that a simple yet efficient diffusion approach could reach state-of-the-art performance in both indoor and outdoor scenarios with acceptable inference time.
PDF

点此查看论文截图

Generative Model-Based Attack on Learnable Image Encryption for Privacy-Preserving Deep Learning

Authors:AprilPyone MaungMaung, Hitoshi Kiya

In this paper, we propose a novel generative model-based attack on learnable image encryption methods proposed for privacy-preserving deep learning. Various learnable encryption methods have been studied to protect the sensitive visual information of plain images, and some of them have been investigated to be robust enough against all existing attacks. However, previous attacks on image encryption focus only on traditional cryptanalytic attacks or reverse translation models, so these attacks cannot recover any visual information if a block-scrambling encryption step, which effectively destroys global information, is applied. Accordingly, in this paper, generative models are explored to evaluate whether such models can restore sensitive visual information from encrypted images for the first time. We first point out that encrypted images have some similarity with plain images in the embedding space. By taking advantage of leaked information from encrypted images, we propose a guided generative model as an attack on learnable image encryption to recover personally identifiable visual information. We implement the proposed attack in two ways by utilizing two state-of-the-art generative models: a StyleGAN-based model and latent diffusion-based one. Experiments were carried out on the CelebA-HQ and ImageNet datasets. Results show that images reconstructed by the proposed method have perceptual similarities to plain images.
PDF arXiv admin note: text overlap with arXiv:2209.07953

点此查看论文截图

Unifying Layout Generation with a Decoupled Diffusion Model

Authors:Mude Hui, Zhizheng Zhang, Xiaoyi Zhang, Wenxuan Xie, Yuwang Wang, Yan Lu

Layout generation aims to synthesize realistic graphic scenes consisting of elements with different attributes including category, size, position, and between-element relation. It is a crucial task for reducing the burden on heavy-duty graphic design works for formatted scenes, e.g., publications, documents, and user interfaces (UIs). Diverse application scenarios impose a big challenge in unifying various layout generation subtasks, including conditional and unconditional generation. In this paper, we propose a Layout Diffusion Generative Model (LDGM) to achieve such unification with a single decoupled diffusion model. LDGM views a layout of arbitrary missing or coarse element attributes as an intermediate diffusion status from a completed layout. Since different attributes have their individual semantics and characteristics, we propose to decouple the diffusion processes for them to improve the diversity of training samples and learn the reverse process jointly to exploit global-scope contexts for facilitating generation. As a result, our LDGM can generate layouts either from scratch or conditional on arbitrary available attributes. Extensive qualitative and quantitative experiments demonstrate our proposed LDGM outperforms existing layout generation models in both functionality and performance.
PDF Accepted by CVPR2023

点此查看论文截图

MaskDiff: Modeling Mask Distribution with Diffusion Probabilistic Model for Few-Shot Instance Segmentation

Authors:Minh-Quan Le, Tam V. Nguyen, Trung-Nghia Le, Thanh-Toan Do, Minh N. Do, Minh-Triet Tran

Few-shot instance segmentation extends the few-shot learning paradigm to the instance segmentation task, which tries to segment instance objects from a query image with a few annotated examples of novel categories. Conventional approaches have attempted to address the task via prototype learning, known as point estimation. However, this mechanism is susceptible to noise and suffers from bias due to a significant scarcity of data. To overcome the disadvantages of the point estimation mechanism, we propose a novel approach, dubbed MaskDiff, which models the underlying conditional distribution of a binary mask, which is conditioned on an object region and $K$-shot information. Inspired by augmentation approaches that perturb data with Gaussian noise for populating low data density regions, we model the mask distribution with a diffusion probabilistic model. In addition, we propose to utilize classifier-free guided mask sampling to integrate category information into the binary mask generation process. Without bells and whistles, our proposed method consistently outperforms state-of-the-art methods on both base and novel classes of the COCO dataset while simultaneously being more stable than existing methods.
PDF

点此查看论文截图

Cones: Concept Neurons in Diffusion Models for Customized Generation

Authors:Zhiheng Liu, Ruili Feng, Kai Zhu, Yifei Zhang, Kecheng Zheng, Yu Liu, Deli Zhao, Jingren Zhou, Yang Cao

Human brains respond to semantic features of presented stimuli with different neurons. It is then curious whether modern deep neural networks admit a similar behavior pattern. Specifically, this paper finds a small cluster of neurons in a diffusion model corresponding to a particular subject. We call those neurons the concept neurons. They can be identified by statistics of network gradients to a stimulation connected with the given subject. The concept neurons demonstrate magnetic properties in interpreting and manipulating generation results. Shutting them can directly yield the related subject contextualized in different scenes. Concatenating multiple clusters of concept neurons can vividly generate all related concepts in a single image. A few steps of further fine-tuning can enhance the multi-concept capability, which may be the first to manage to generate up to four different subjects in a single image. For large-scale applications, the concept neurons are environmentally friendly as we only need to store a sparse cluster of int index instead of dense float32 values of the parameters, which reduces storage consumption by 90\% compared with previous subject-driven generation methods. Extensive qualitative and quantitative studies on diverse scenarios show the superiority of our method in interpreting and manipulating diffusion models.
PDF

点此查看论文截图

Detecting Images Generated by Diffusers

Authors:Davide Alessandro Coccomini, Andrea Esuli, Fabrizio Falchi, Claudio Gennaro, Giuseppe Amato

This paper explores the task of detecting images generated by text-to-image diffusion models. To evaluate this, we consider images generated from captions in the MSCOCO and Wikimedia datasets using two state-of-the-art models: Stable Diffusion and GLIDE. Our experiments show that it is possible to detect the generated images using simple Multi-Layer Perceptrons (MLPs), starting from features extracted by CLIP, or traditional Convolutional Neural Networks (CNNs). We also observe that models trained on images generated by Stable Diffusion can detect images generated by GLIDE relatively well, however, the reverse is not true. Lastly, we find that incorporating the associated textual information with the images rarely leads to significant improvement in detection results but that the type of subject depicted in the image can have a significant impact on performance. This work provides insights into the feasibility of detecting generated images, and has implications for security and privacy concerns in real-world applications.
PDF

点此查看论文截图

Brain-Diffuser: Natural scene reconstruction from fMRI signals using generative latent diffusion

Authors:Furkan Ozcelik, Rufin VanRullen

In neural decoding research, one of the most intriguing topics is the reconstruction of perceived natural images based on fMRI signals. Previous studies have succeeded in re-creating different aspects of the visuals, such as low-level properties (shape, texture, layout) or high-level features (category of objects, descriptive semantics of scenes) but have typically failed to reconstruct these properties together for complex scene images. Generative AI has recently made a leap forward with latent diffusion models capable of generating high-complexity images. Here, we investigate how to take advantage of this innovative technology for brain decoding. We present a two-stage scene reconstruction framework called Brain-Diffuser''. In the first stage, starting from fMRI signals, we reconstruct images that capture low-level properties and overall layout using a VDVAE (Very Deep Variational Autoencoder) model. In the second stage, we use the image-to-image framework of a latent diffusion model (Versatile Diffusion) conditioned on predicted multimodal (text and visual) features, to generate final reconstructed images. On the publicly available Natural Scenes Dataset benchmark, our method outperforms previous models both qualitatively and quantitatively. When applied to synthetic fMRI patterns generated from individual ROI (region-of-interest) masks, our trained model creates compellingROI-optimal’’ scenes consistent with neuroscientific knowledge. Thus, the proposed methodology can have an impact on both applied (e.g. brain-computer interface) and fundamental neuroscience.
PDF

点此查看论文截图

3DGen: Triplane Latent Diffusion for Textured Mesh Generation

Authors:Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, Barlas Oğuz

Latent diffusion models for image generation have crossed a quality threshold which enabled them to achieve mass adoption. Recently, a series of works have made advancements towards replicating this success in the 3D domain, introducing techniques such as point cloud VAE, triplane representation, neural implicit surfaces and differentiable rendering based training. We take another step along this direction, combining these developments in a two-step pipeline consisting of 1) a triplane VAE which can learn latent representations of textured meshes and 2) a conditional diffusion model which generates the triplane features. For the first time this architecture allows conditional and unconditional generation of high quality textured or untextured 3D meshes across multiple diverse categories in a few seconds on a single GPU. It outperforms previous work substantially on image-conditioned and unconditional generation on mesh quality as well as texture generation. Furthermore, we demonstrate the scalability of our model to large datasets for increased quality and diversity. We will release our code and trained models.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录