GAN


2023-03-09 更新

End-to-end Face-swapping via Adaptive Latent Representation Learning

Authors:Chenhao Lin, Pengbin Hu, Chao Shen, Qian Li

Taking full advantage of the excellent performance of StyleGAN, style transfer-based face swapping methods have been extensively investigated recently. However, these studies require separate face segmentation and blending modules for successful face swapping, and the fixed selection of the manipulated latent code in these works is reckless, thus degrading face swapping quality, generalizability, and practicability. This paper proposes a novel and end-to-end integrated framework for high resolution and attribute preservation face swapping via Adaptive Latent Representation Learning. Specifically, we first design a multi-task dual-space face encoder by sharing the underlying feature extraction network to simultaneously complete the facial region perception and face encoding. This encoder enables us to control the face pose and attribute individually, thus enhancing the face swapping quality. Next, we propose an adaptive latent codes swapping module to adaptively learn the mapping between the facial attributes and the latent codes and select effective latent codes for improved retention of facial attributes. Finally, the initial face swapping image generated by StyleGAN2 is blended with the facial region mask generated by our encoder to address the background blur problem. Our framework integrating facial perceiving and blending into the end-to-end training and testing process can achieve high realistic face-swapping on wild faces without segmentation masks. Experimental results demonstrate the superior performance of our approach over state-of-the-art methods.
PDF

点此查看论文截图

Vector Quantized Time Series Generation with a Bidirectional Prior Model

Authors:Daesoo Lee, Sara Malacarne, Erlend Aune

Time series generation (TSG) studies have mainly focused on the use of Generative Adversarial Networks (GANs) combined with recurrent neural network (RNN) variants. However, the fundamental limitations and challenges of training GANs still remain. In addition, the RNN-family typically has difficulties with temporal consistency between distant timesteps. Motivated by the successes in the image generation (IMG) domain, we propose TimeVQVAE, the first work, to our knowledge, that uses vector quantization (VQ) techniques to address the TSG problem. Moreover, the priors of the discrete latent spaces are learned with bidirectional transformer models that can better capture global temporal consistency. We also propose VQ modeling in a time-frequency domain, separated into low-frequency (LF) and high-frequency (HF). This allows us to retain important characteristics of the time series and, in turn, generate new synthetic signals that are of better quality, with sharper changes in modularity, than its competing TSG methods. Our experimental evaluation is conducted on all datasets from the UCR archive, using well-established metrics in the IMG literature, such as Fr\’echet inception distance and inception scores. Our implementation on GitHub: \url{https://github.com/ML4ITS/TimeVQVAE}.
PDF accepted at AISTATS 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录