无监督/半监督/对比学习


2023-03-08 更新

Contrastive Hierarchical Clustering

Authors:Michał Znaleźniak, Przemysław Rola, Patryk Kaszuba, Jacek Tabor, Marek Śmieja

Deep clustering has been dominated by flat models, which split a dataset into a predefined number of groups. Although recent methods achieve an extremely high similarity with the ground truth on popular benchmarks, the information contained in the flat partition is limited. In this paper, we introduce CoHiClust, a Contrastive Hierarchical Clustering model based on deep neural networks, which can be applied to typical image data. By employing a self-supervised learning approach, CoHiClust distills the base network into a binary tree without access to any labeled data. The hierarchical clustering structure can be used to analyze the relationship between clusters, as well as to measure the similarity between data points. Experiments demonstrate that CoHiClust generates a reasonable structure of clusters, which is consistent with our intuition and image semantics. Moreover, it obtains superior clustering accuracy on most of the image datasets compared to the state-of-the-art flat clustering models.
PDF

点此查看论文截图

Sample-efficient Real-time Planning with Curiosity Cross-Entropy Method and Contrastive Learning

Authors:Mostafa Kotb, Cornelius Weber, Stefan Wermter

Model-based reinforcement learning (MBRL) with real-time planning has shown great potential in locomotion and manipulation control tasks. However, the existing planning methods, such as the Cross-Entropy Method (CEM), do not scale well to complex high-dimensional environments. One of the key reasons for underperformance is the lack of exploration, as these planning methods only aim to maximize the cumulative extrinsic reward over the planning horizon. Furthermore, planning inside the compact latent space in the absence of observations makes it challenging to use curiosity-based intrinsic motivation. We propose Curiosity CEM (CCEM), an improved version of the CEM algorithm for encouraging exploration via curiosity. Our proposed method maximizes the sum of state-action Q values over the planning horizon, in which these Q values estimate the future extrinsic and intrinsic reward, hence encouraging reaching novel observations. In addition, our model uses contrastive representation learning to efficiently learn latent representations. Experiments on image-based continuous control tasks from the DeepMind Control suite show that CCEM is by a large margin more sample-efficient than previous MBRL algorithms and compares favorably with the best model-free RL methods.
PDF 7 pages, 4 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录