Domain Adaptation


2023-03-08 更新

Challenges of the Creation of a Dataset for Vision Based Human Hand Action Recognition in Industrial Assembly

Authors:Fabian Sturm, Elke Hergenroether, Julian Reinhardt, Petar Smilevski Vojnovikj, Melanie Siegel

This work presents the Industrial Hand Action Dataset V1, an industrial assembly dataset consisting of 12 classes with 459,180 images in the basic version and 2,295,900 images after spatial augmentation. Compared to other freely available datasets tested, it has an above-average duration and, in addition, meets the technical and legal requirements for industrial assembly lines. Furthermore, the dataset contains occlusions, hand-object interaction, and various fine-grained human hand actions for industrial assembly tasks that were not found in combination in examined datasets. The recorded ground truth assembly classes were selected after extensive observation of real-world use cases. A Gated Transformer Network, a state-of-the-art model from the transformer domain was adapted, and proved with a test accuracy of 86.25% before hyperparameter tuning by 18,269,959 trainable parameters, that it is possible to train sequential deep learning models with this dataset.
PDF

点此查看论文截图

Guiding Pseudo-labels with Uncertainty Estimation for Test-Time Adaptation

Authors:Mattia Litrico, Alessio Del Bue, Pietro Morerio

Standard Unsupervised Domain Adaptation (UDA) methods assume the availability of both source and target data during the adaptation. In this work, we investigate the Test-Time Adaptation (TTA), a specific case of UDA where a model is adapted to a target domain without access to source data. We propose a novel approach for the TTA setting based on a loss reweighting strategy that brings robustness against the noise that inevitably affects the pseudo-labels. The classification loss is reweighted based on the reliability of the pseudo-labels that is measured by estimating their uncertainty. Guided by such reweighting strategy, the pseudo-labels are progressively refined by aggregating knowledge from neighbouring samples. Furthermore, a self-supervised contrastive framework is leveraged as a target space regulariser to enhance such knowledge aggregation. A novel negative pairs exclusion strategy is proposed to identify and exclude negative pairs made of samples sharing the same class, even in presence of some noise in the pseudo-labels. Our method outperforms previous methods on three major benchmarks by a large margin. We set the new TTA state-of-the-art on VisDA-C and DomainNet with a performance gain of +1.8\% on both benchmarks and on PACS with +12.3\% in the single-source setting and +6.6\% in\ multi-target adaptation. Additional analyses demonstrate that the proposed approach is robust to the noise, which results in significantly more accurate pseudo-labels compared to state-of-the-art approaches.
PDF To be published in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2023

点此查看论文截图

A Meta-Evaluation of Faithfulness Metrics for Long-Form Hospital-Course Summarization

Authors:Griffin Adams, Jason Zucker, Noémie Elhadad

Long-form clinical summarization of hospital admissions has real-world significance because of its potential to help both clinicians and patients. The faithfulness of summaries is critical to their safe usage in clinical settings. To better understand the limitations of abstractive systems, as well as the suitability of existing evaluation metrics, we benchmark faithfulness metrics against fine-grained human annotations for model-generated summaries of a patient’s Brief Hospital Course. We create a corpus of patient hospital admissions and summaries for a cohort of HIV patients, each with complex medical histories. Annotators are presented with summaries and source notes, and asked to categorize manually highlighted summary elements (clinical entities like conditions and medications as well as actions like “following up”) into one of three categories: Incorrect,''Missing,’’ and ``Not in Notes.’’ We meta-evaluate a broad set of proposed faithfulness metrics and, across metrics, explore the importance of domain adaptation (e.g. the impact of in-domain pre-training and metric fine-tuning), the use of source-summary alignments, and the effects of distilling a single metric from an ensemble of pre-existing metrics. Off-the-shelf metrics with no exposure to clinical text correlate well yet overly rely on summary extractiveness. As a practical guide to long-form clinical narrative summarization, we find that most metrics correlate best to human judgments when provided with one summary sentence at a time and a minimal set of relevant source context.
PDF Preprint

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录