Diffusion Models


2023-03-08 更新

StyO: Stylize Your Face in Only One-Shot

Authors:Bonan Li, Zicheng Zhang, Xuecheng Nie, Congying Han, Yinhan Hu, Tiande Guo

This paper focuses on face stylization with a single artistic target. Existing works for this task often fail to retain the source content while achieving geometry variation. Here, we present a novel StyO model, ie. Stylize the face in only One-shot, to solve the above problem. In particular, StyO exploits a disentanglement and recombination strategy. It first disentangles the content and style of source and target images into identifiers, which are then recombined in a cross manner to derive the stylized face image. In this way, StyO decomposes complex images into independent and specific attributes, and simplifies one-shot face stylization as the combination of different attributes from input images, thus producing results better matching face geometry of target image and content of source one. StyO is implemented with latent diffusion models (LDM) and composed of two key modules: 1) Identifier Disentanglement Learner (IDL) for disentanglement phase. It represents identifiers as contrastive text prompts, ie. positive and negative descriptions. And it introduces a novel triple reconstruction loss to fine-tune the pre-trained LDM for encoding style and content into corresponding identifiers; 2) Fine-grained Content Controller (FCC) for the recombination phase. It recombines disentangled identifiers from IDL to form an augmented text prompt for generating stylized faces. In addition, FCC also constrains the cross-attention maps of latent and text features to preserve source face details in results. The extensive evaluation shows that StyO produces high-quality images on numerous paintings of various styles and outperforms the current state-of-the-art. Code will be released upon acceptance.
PDF

点此查看论文截图

Zeroth-Order Optimization Meets Human Feedback: Provable Learning via Ranking Oracles

Authors:Zhiwei Tang, Dmitry Rybin, Tsung-Hui Chang

In this paper, we focus on a novel optimization problem in which the objective function is a black-box and can only be evaluated through a ranking oracle. This problem is common in real-world applications, particularly in cases where the function is assessed by human judges. Reinforcement Learning with Human Feedback (RLHF) is a prominent example of such an application, which is adopted by the recent works \cite{ouyang2022training,liu2023languages,chatgpt,bai2022training} to improve the quality of Large Language Models (LLMs) with human guidance. We propose ZO-RankSGD, a first-of-its-kind zeroth-order optimization algorithm, to solve this optimization problem with a theoretical guarantee. Specifically, our algorithm employs a new rank-based random estimator for the descent direction and is proven to converge to a stationary point. ZO-RankSGD can also be directly applied to the policy search problem in reinforcement learning when only a ranking oracle of the episode reward is available. This makes ZO-RankSGD a promising alternative to existing RLHF methods, as it optimizes in an online fashion and thus can work without any pre-collected data. Furthermore, we demonstrate the effectiveness of ZO-RankSGD in a novel application: improving the quality of images generated by a diffusion generative model with human ranking feedback. Throughout experiments, we found that ZO-RankSGD can significantly enhance the detail of generated images with only a few rounds of human feedback. Overall, our work advances the field of zeroth-order optimization by addressing the problem of optimizing functions with only ranking feedback, and offers an effective approach for aligning human and machine intentions in a wide range of domains. Our code is released here \url{https://github.com/TZW1998/Taming-Stable-Diffusion-with-Human-Ranking-Feedback}.
PDF

点此查看论文截图

DLT: Conditioned layout generation with Joint Discrete-Continuous Diffusion Layout Transformer

Authors:Elad Levi, Eli Brosh, Mykola Mykhailych, Meir Perez

Generating visual layouts is an essential ingredient of graphic design. The ability to condition layout generation on a partial subset of component attributes is critical to real-world applications that involve user interaction. Recently, diffusion models have demonstrated high-quality generative performances in various domains. However, it is unclear how to apply diffusion models to the natural representation of layouts which consists of a mix of discrete (class) and continuous (location, size) attributes. To address the conditioning layout generation problem, we introduce DLT, a joint discrete-continuous diffusion model. DLT is a transformer-based model which has a flexible conditioning mechanism that allows for conditioning on any given subset of all the layout component classes, locations, and sizes. Our method outperforms state-of-the-art generative models on various layout generation datasets with respect to different metrics and conditioning settings. Additionally, we validate the effectiveness of our proposed conditioning mechanism and the joint continuous-diffusion process. This joint process can be incorporated into a wide range of mixed discrete-continuous generative tasks.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录