I2I Translation


2023-03-07 更新

Learning to Localize in Unseen Scenes with Relative Pose Regressors

Authors:Ofer Idan, Yoli Shavit, Yosi Keller

Relative pose regressors (RPRs) localize a camera by estimating its relative translation and rotation to a pose-labelled reference. Unlike scene coordinate regression and absolute pose regression methods, which learn absolute scene parameters, RPRs can (theoretically) localize in unseen environments, since they only learn the residual pose between camera pairs. In practice, however, the performance of RPRs is significantly degraded in unseen scenes. In this work, we propose to aggregate paired feature maps into latent codes, instead of operating on global image descriptors, in order to improve the generalization of RPRs. We implement aggregation with concatenation, projection, and attention operations (Transformer Encoders) and learn to regress the relative pose parameters from the resulting latent codes. We further make use of a recently proposed continuous representation of rotation matrices, which alleviates the limitations of the commonly used quaternions. Compared to state-of-the-art RPRs, our model is shown to localize significantly better in unseen environments, across both indoor and outdoor benchmarks, while maintaining competitive performance in seen scenes. We validate our findings and architecture design through multiple ablations. Our code and pretrained models is publicly available.
PDF

点此查看论文截图

DwinFormer: Dual Window Transformers for End-to-End Monocular Depth Estimation

Authors:Md Awsafur Rahman, Shaikh Anowarul Fattah

Depth estimation from a single image is of paramount importance in the realm of computer vision, with a multitude of applications. Conventional methods suffer from the trade-off between consistency and fine-grained details due to the local-receptive field limiting their practicality. This lack of long-range dependency inherently comes from the convolutional neural network part of the architecture. In this paper, a dual window transformer-based network, namely DwinFormer, is proposed, which utilizes both local and global features for end-to-end monocular depth estimation. The DwinFormer consists of dual window self-attention and cross-attention transformers, Dwin-SAT and Dwin-CAT, respectively. The Dwin-SAT seamlessly extracts intricate, locally aware features while concurrently capturing global context. It harnesses the power of local and global window attention to adeptly capture both short-range and long-range dependencies, obviating the need for complex and computationally expensive operations, such as attention masking or window shifting. Moreover, Dwin-SAT introduces inductive biases which provide desirable properties, such as translational equvariance and less dependence on large-scale data. Furthermore, conventional decoding methods often rely on skip connections which may result in semantic discrepancies and a lack of global context when fusing encoder and decoder features. In contrast, the Dwin-CAT employs both local and global window cross-attention to seamlessly fuse encoder and decoder features with both fine-grained local and contextually aware global information, effectively amending semantic gap. Empirical evidence obtained through extensive experimentation on the NYU-Depth-V2 and KITTI datasets demonstrates the superiority of the proposed method, consistently outperforming existing approaches across both indoor and outdoor environments.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录