Few-Shot


2023-03-07 更新

DiTTO: A Feature Representation Imitation Approach for Improving Cross-Lingual Transfer

Authors:Shanu Kumar, Abbaraju Soujanya, Sandipan Dandapat, Sunayana Sitaram, Monojit Choudhury

Zero-shot cross-lingual transfer is promising, however has been shown to be sub-optimal, with inferior transfer performance across low-resource languages. In this work, we envision languages as domains for improving zero-shot transfer by jointly reducing the feature incongruity between the source and the target language and increasing the generalization capabilities of pre-trained multilingual transformers. We show that our approach, DiTTO, significantly outperforms the standard zero-shot fine-tuning method on multiple datasets across all languages using solely unlabeled instances in the target language. Empirical results show that jointly reducing feature incongruity for multiple target languages is vital for successful cross-lingual transfer. Moreover, our model enables better cross-lingual transfer than standard fine-tuning methods, even in the few-shot setting.
PDF Accepted at EACL 2023

点此查看论文截图

Few-Shot Defect Image Generation via Defect-Aware Feature Manipulation

Authors:Yuxuan Duan, Yan Hong, Li Niu, Liqing Zhang

The performances of defect inspection have been severely hindered by insufficient defect images in industries, which can be alleviated by generating more samples as data augmentation. We propose the first defect image generation method in the challenging few-shot cases. Given just a handful of defect images and relatively more defect-free ones, our goal is to augment the dataset with new defect images. Our method consists of two training stages. First, we train a data-efficient StyleGAN2 on defect-free images as the backbone. Second, we attach defect-aware residual blocks to the backbone, which learn to produce reasonable defect masks and accordingly manipulate the features within the masked regions by training the added modules on limited defect images. Extensive experiments on MVTec AD dataset not only validate the effectiveness of our method in generating realistic and diverse defect images, but also manifest the benefits it brings to downstream defect inspection tasks. Codes are available at https://github.com/Ldhlwh/DFMGAN.
PDF Accepted by AAAI 2023

点此查看论文截图

CapDet: Unifying Dense Captioning and Open-World Detection Pretraining

Authors:Yanxin Long, Youpeng Wen, Jianhua Han, Hang Xu, Pengzhen Ren, Wei Zhang, Shen Zhao, Xiaodan Liang

Benefiting from large-scale vision-language pre-training on image-text pairs, open-world detection methods have shown superior generalization ability under the zero-shot or few-shot detection settings. However, a pre-defined category space is still required during the inference stage of existing methods and only the objects belonging to that space will be predicted. To introduce a “real” open-world detector, in this paper, we propose a novel method named CapDet to either predict under a given category list or directly generate the category of predicted bounding boxes. Specifically, we unify the open-world detection and dense caption tasks into a single yet effective framework by introducing an additional dense captioning head to generate the region-grounded captions. Besides, adding the captioning task will in turn benefit the generalization of detection performance since the captioning dataset covers more concepts. Experiment results show that by unifying the dense caption task, our CapDet has obtained significant performance improvements (e.g., +2.1% mAP on LVIS rare classes) over the baseline method on LVIS (1203 classes). Besides, our CapDet also achieves state-of-the-art performance on dense captioning tasks, e.g., 15.44% mAP on VG V1.2 and 13.98% on the VG-COCO dataset.
PDF Accepted by CVPR2023

点此查看论文截图

Prismer: A Vision-Language Model with An Ensemble of Experts

Authors:Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, Anima Anandkumar

Recent vision-language models have shown impressive multi-modal generation capabilities. However, typically they require training huge models on massive datasets. As a more scalable alternative, we introduce Prismer, a data- and parameter-efficient vision-language model that leverages an ensemble of domain experts. Prismer only requires training of a small number of components, with the majority of network weights inherited from readily-available, pre-trained domain experts, and kept frozen during training. By leveraging experts from a wide range of domains, we show that Prismer can efficiently pool this expert knowledge and adapt it to various vision-language reasoning tasks. In our experiments, we show that Prismer achieves fine-tuned and few-shot learning performance which is competitive with current state-of-the-art models, whilst requiring up to two orders of magnitude less training data. Code is available at https://github.com/NVlabs/prismer.
PDF Tech Report. Project Page: https://shikun.io/projects/prismer Code: https://github.com/NVlabs/prismer

点此查看论文截图

Time Associated Meta Learning for Clinical Prediction

Authors:Hao Liu, Muhan Zhang, Zehao Dong, Lecheng Kong, Yixin Chen, Bradley Fritz, Dacheng Tao, Christopher King

Rich Electronic Health Records (EHR), have created opportunities to improve clinical processes using machine learning methods. Prediction of the same patient events at different time horizons can have very different applications and interpretations; however, limited number of events in each potential time window hurts the effectiveness of conventional machine learning algorithms. We propose a novel time associated meta learning (TAML) method to make effective predictions at multiple future time points. We view time-associated disease prediction as classification tasks at multiple time points. Such closely-related classification tasks are an excellent candidate for model-based meta learning. To address the sparsity problem after task splitting, TAML employs a temporal information sharing strategy to augment the number of positive samples and include the prediction of related phenotypes or events in the meta-training phase. We demonstrate the effectiveness of TAML on multiple clinical datasets, where it consistently outperforms a range of strong baselines. We also develop a MetaEHR package for implementing both time-associated and time-independent few-shot prediction on EHR data.
PDF

点此查看论文截图

CLIP-guided Prototype Modulating for Few-shot Action Recognition

Authors:Xiang Wang, Shiwei Zhang, Jun Cen, Changxin Gao, Yingya Zhang, Deli Zhao, Nong Sang

Learning from large-scale contrastive language-image pre-training like CLIP has shown remarkable success in a wide range of downstream tasks recently, but it is still under-explored on the challenging few-shot action recognition (FSAR) task. In this work, we aim to transfer the powerful multimodal knowledge of CLIP to alleviate the inaccurate prototype estimation issue due to data scarcity, which is a critical problem in low-shot regimes. To this end, we present a CLIP-guided prototype modulating framework called CLIP-FSAR, which consists of two key components: a video-text contrastive objective and a prototype modulation. Specifically, the former bridges the task discrepancy between CLIP and the few-shot video task by contrasting videos and corresponding class text descriptions. The latter leverages the transferable textual concepts from CLIP to adaptively refine visual prototypes with a temporal Transformer. By this means, CLIP-FSAR can take full advantage of the rich semantic priors in CLIP to obtain reliable prototypes and achieve accurate few-shot classification. Extensive experiments on five commonly used benchmarks demonstrate the effectiveness of our proposed method, and CLIP-FSAR significantly outperforms existing state-of-the-art methods under various settings. The source code and models will be publicly available at https://github.com/alibaba-mmai-research/CLIP-FSAR.
PDF This work has been submitted to the Springer for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录