2023-03-07 更新
Visualizing Transferred Knowledge: An Interpretive Model of Unsupervised Domain Adaptation
Authors:Wenxiao Xiao, Zhengming Ding, Hongfu Liu
Many research efforts have been committed to unsupervised domain adaptation (DA) problems that transfer knowledge learned from a labeled source domain to an unlabeled target domain. Various DA methods have achieved remarkable results recently in terms of predicting ability, which implies the effectiveness of the aforementioned knowledge transferring. However, state-of-the-art methods rarely probe deeper into the transferred mechanism, leaving the true essence of such knowledge obscure. Recognizing its importance in the adaptation process, we propose an interpretive model of unsupervised domain adaptation, as the first attempt to visually unveil the mystery of transferred knowledge. Adapting the existing concept of the prototype from visual image interpretation to the DA task, our model similarly extracts shared information from the domain-invariant representations as prototype vectors. Furthermore, we extend the current prototype method with our novel prediction calibration and knowledge fidelity preservation modules, to orientate the learned prototypes to the actual transferred knowledge. By visualizing these prototypes, our method not only provides an intuitive explanation for the base model’s predictions but also unveils transfer knowledge by matching the image patches with the same semantics across both source and target domains. Comprehensive experiments and in-depth explorations demonstrate the efficacy of our method in understanding the transferred mechanism and its potential in downstream tasks including model diagnosis.
PDF
点此查看论文截图
Neural Airport Ground Handling
Authors:Yaoxin Wu, Jianan Zhou, Yunwen Xia, Xianli Zhang, Zhiguang Cao, Jie Zhang
Airport ground handling (AGH) offers necessary operations to flights during their turnarounds and is of great importance to the efficiency of airport management and the economics of aviation. Such a problem involves the interplay among the operations that leads to NP-hard problems with complex constraints. Hence, existing methods for AGH are usually designed with massive domain knowledge but still fail to yield high-quality solutions efficiently. In this paper, we aim to enhance the solution quality and computation efficiency for solving AGH. Particularly, we first model AGH as a multiple-fleet vehicle routing problem (VRP) with miscellaneous constraints including precedence, time windows, and capacity. Then we propose a construction framework that decomposes AGH into sub-problems (i.e., VRPs) in fleets and present a neural method to construct the routing solutions to these sub-problems. In specific, we resort to deep learning and parameterize the construction heuristic policy with an attention-based neural network trained with reinforcement learning, which is shared across all sub-problems. Extensive experiments demonstrate that our method significantly outperforms classic meta-heuristics, construction heuristics and the specialized methods for AGH. Besides, we empirically verify that our neural method generalizes well to instances with large numbers of flights or varying parameters, and can be readily adapted to solve real-time AGH with stochastic flight arrivals. Our code is publicly available at: https://github.com/RoyalSkye/AGH.
PDF Accepted by IEEE Transactions on Intelligent Transportation Systems (TITS)
点此查看论文截图
FAME-ViL: Multi-Tasking Vision-Language Model for Heterogeneous Fashion Tasks
Authors:Xiao Han, Xiatian Zhu, Licheng Yu, Li Zhang, Yi-Zhe Song, Tao Xiang
In the fashion domain, there exists a variety of vision-and-language (V+L) tasks, including cross-modal retrieval, text-guided image retrieval, multi-modal classification, and image captioning. They differ drastically in each individual input/output format and dataset size. It has been common to design a task-specific model and fine-tune it independently from a pre-trained V+L model (e.g., CLIP). This results in parameter inefficiency and inability to exploit inter-task relatedness. To address such issues, we propose a novel FAshion-focused Multi-task Efficient learning method for Vision-and-Language tasks (FAME-ViL) in this work. Compared with existing approaches, FAME-ViL applies a single model for multiple heterogeneous fashion tasks, therefore being much more parameter-efficient. It is enabled by two novel components: (1) a task-versatile architecture with cross-attention adapters and task-specific adapters integrated into a unified V+L model, and (2) a stable and effective multi-task training strategy that supports learning from heterogeneous data and prevents negative transfer. Extensive experiments on four fashion tasks show that our FAME-ViL can save 61.5% of parameters over alternatives, while significantly outperforming the conventional independently trained single-task models. Code is available at https://github.com/BrandonHanx/FAME-ViL.
PDF CVPR 2023
点此查看论文截图
Prismer: A Vision-Language Model with An Ensemble of Experts
Authors:Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, Anima Anandkumar
Recent vision-language models have shown impressive multi-modal generation capabilities. However, typically they require training huge models on massive datasets. As a more scalable alternative, we introduce Prismer, a data- and parameter-efficient vision-language model that leverages an ensemble of domain experts. Prismer only requires training of a small number of components, with the majority of network weights inherited from readily-available, pre-trained domain experts, and kept frozen during training. By leveraging experts from a wide range of domains, we show that Prismer can efficiently pool this expert knowledge and adapt it to various vision-language reasoning tasks. In our experiments, we show that Prismer achieves fine-tuned and few-shot learning performance which is competitive with current state-of-the-art models, whilst requiring up to two orders of magnitude less training data. Code is available at https://github.com/NVlabs/prismer.
PDF Tech Report. Project Page: https://shikun.io/projects/prismer Code: https://github.com/NVlabs/prismer
点此查看论文截图
Model-Agnostic Meta-Learning for Multilingual Hate Speech Detection
Authors:Md Rabiul Awal, Roy Ka-Wei Lee, Eshaan Tanwar, Tanmay Garg, Tanmoy Chakraborty
Hate speech in social media is a growing phenomenon, and detecting such toxic content has recently gained significant traction in the research community. Existing studies have explored fine-tuning language models (LMs) to perform hate speech detection, and these solutions have yielded significant performance. However, most of these studies are limited to detecting hate speech only in English, neglecting the bulk of hateful content that is generated in other languages, particularly in low-resource languages. Developing a classifier that captures hate speech and nuances in a low-resource language with limited data is extremely challenging. To fill the research gap, we propose HateMAML, a model-agnostic meta-learning-based framework that effectively performs hate speech detection in low-resource languages. HateMAML utilizes a self-supervision strategy to overcome the limitation of data scarcity and produces better LM initialization for fast adaptation to an unseen target language (i.e., cross-lingual transfer) or other hate speech datasets (i.e., domain generalization). Extensive experiments are conducted on five datasets across eight different low-resource languages. The results show that HateMAML outperforms the state-of-the-art baselines by more than 3% in the cross-domain multilingual transfer setting. We also conduct ablation studies to analyze the characteristics of HateMAML.
PDF
点此查看论文截图
HyperPose: Camera Pose Localization using Attention Hypernetworks
Authors:Ron Ferens, Yosi Keller
In this study, we propose the use of attention hypernetworks in camera pose localization. The dynamic nature of natural scenes, including changes in environment, perspective, and lighting, creates an inherent domain gap between the training and test sets that limits the accuracy of contemporary localization networks. To overcome this issue, we suggest a camera pose regressor that integrates a hypernetwork. During inference, the hypernetwork generates adaptive weights for the localization regression heads based on the input image, effectively reducing the domain gap. We also suggest the use of a Transformer-Encoder as the hypernetwork, instead of the common multilayer perceptron, to derive an attention hypernetwork. The proposed approach achieves superior results compared to state-of-the-art methods on contemporary datasets. To the best of our knowledge, this is the first instance of using hypernetworks in camera pose regression, as well as using Transformer-Encoders as hypernetworks. We make our code publicly available.
PDF
点此查看论文截图
IDA: Informed Domain Adaptive Semantic Segmentation
Authors:Zheng Chen, Zhengming Ding, Jason M. Gregory, Lantao Liu
Mixup-based data augmentation has been validated to be a critical stage in the self-training framework for unsupervised domain adaptive semantic segmentation (UDA-SS), which aims to transfer knowledge from a well-annotated (source) domain to an unlabeled (target) domain. Existing self-training methods usually adopt the popular region-based mixup techniques with a random sampling strategy, which unfortunately ignores the dynamic evolution of different semantics across various domains as training proceeds. To improve the UDA-SS performance, we propose an Informed Domain Adaptation (IDA) model, a self-training framework that mixes the data based on class-level segmentation performance, which aims to emphasize small-region semantics during mixup. In our IDA model, the class-level performance is tracked by an expected confidence score (ECS). We then use a dynamic schedule to determine the mixing ratio for data in different domains. Extensive experimental results reveal that our proposed method is able to outperform the state-of-the-art UDA-SS method by a margin of 1.1 mIoU in the adaptation of GTA-V to Cityscapes and of 0.9 mIoU in the adaptation of SYNTHIA to Cityscapes.
PDF
点此查看论文截图
Model-Agnostic Meta-Learning for Natural Language Understanding Tasks in Finance
Authors:Bixing Yan, Shaoling Chen, Yuxuan He, Zhihan Li
Natural language understanding(NLU) is challenging for finance due to the lack of annotated data and the specialized language in that domain. As a result, researchers have proposed to use pre-trained language model and multi-task learning to learn robust representations. However, aggressive fine-tuning often causes over-fitting and multi-task learning may favor tasks with significantly larger amounts data, etc. To address these problems, in this paper, we investigate model-agnostic meta-learning algorithm(MAML) in low-resource financial NLU tasks. Our contribution includes: 1. we explore the performance of MAML method with multiple types of tasks: GLUE datasets, SNLI, Sci-Tail and Financial PhraseBank; 2. we study the performance of MAML method with multiple single-type tasks: a real scenario stock price prediction problem with twitter text data. Our models achieve the state-of-the-art performance according to the experimental results, which demonstrate that our method can adapt fast and well to low-resource situations.
PDF 13 pages, 6 figures, 8 tables
点此查看论文截图
UniHCP: A Unified Model for Human-Centric Perceptions
Authors:Yuanzheng Ci, Yizhou Wang, Meilin Chen, Shixiang Tang, Lei Bai, Feng Zhu, Rui Zhao, Fengwei Yu, Donglian Qi, Wanli Ouyang
Human-centric perceptions (e.g., pose estimation, human parsing, pedestrian detection, person re-identification, etc.) play a key role in industrial applications of visual models. While specific human-centric tasks have their own relevant semantic aspect to focus on, they also share the same underlying semantic structure of the human body. However, few works have attempted to exploit such homogeneity and design a general-propose model for human-centric tasks. In this work, we revisit a broad range of human-centric tasks and unify them in a minimalist manner. We propose UniHCP, a Unified Model for Human-Centric Perceptions, which unifies a wide range of human-centric tasks in a simplified end-to-end manner with the plain vision transformer architecture. With large-scale joint training on 33 human-centric datasets, UniHCP can outperform strong baselines on several in-domain and downstream tasks by direct evaluation. When adapted to a specific task, UniHCP achieves new SOTAs on a wide range of human-centric tasks, e.g., 69.8 mIoU on CIHP for human parsing, 86.18 mA on PA-100K for attribute prediction, 90.3 mAP on Market1501 for ReID, and 85.8 JI on CrowdHuman for pedestrian detection, performing better than specialized models tailored for each task.
PDF Accepted for publication at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023 (CVPR 2023)
点此查看论文截图
Adaptive Texture Filtering for Single-Domain Generalized Segmentation
Authors:Xinhui Li, Mingjia Li, Yaxing Wang, Chuan-Xian Ren, Xiaojie Guo
Domain generalization in semantic segmentation aims to alleviate the performance degradation on unseen domains through learning domain-invariant features. Existing methods diversify images in the source domain by adding complex or even abnormal textures to reduce the sensitivity to domain specific features. However, these approaches depend heavily on the richness of the texture bank, and training them can be time-consuming. In contrast to importing textures arbitrarily or augmenting styles randomly, we focus on the single source domain itself to achieve generalization. In this paper, we present a novel adaptive texture filtering mechanism to suppress the influence of texture without using augmentation, thus eliminating the interference of domain-specific features. Further, we design a hierarchical guidance generalization network equipped with structure-guided enhancement modules, which purpose is to learn the domain-invariant generalized knowledge. Extensive experiments together with ablation studies on widely-used datasets are conducted to verify the effectiveness of the proposed model, and reveal its superiority over other state-of-the-art alternatives.
PDF Accepted by AAAI 2023
点此查看论文截图
MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning
Authors:Mikayel Samvelyan, Akbir Khan, Michael Dennis, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, Roberta Raileanu, Tim Rocktäschel
Open-ended learning methods that automatically generate a curriculum of increasingly challenging tasks serve as a promising avenue toward generally capable reinforcement learning agents. Existing methods adapt curricula independently over either environment parameters (in single-agent settings) or co-player policies (in multi-agent settings). However, the strengths and weaknesses of co-players can manifest themselves differently depending on environmental features. It is thus crucial to consider the dependency between the environment and co-player when shaping a curriculum in multi-agent domains. In this work, we use this insight and extend Unsupervised Environment Design (UED) to multi-agent environments. We then introduce Multi-Agent Environment Design Strategist for Open-Ended Learning (MAESTRO), the first multi-agent UED approach for two-player zero-sum settings. MAESTRO efficiently produces adversarial, joint curricula over both environments and co-players and attains minimax-regret guarantees at Nash equilibrium. Our experiments show that MAESTRO outperforms a number of strong baselines on competitive two-player games, spanning discrete and continuous control settings.
PDF International Conference on Learning Representations (ICLR) 2023