2023-02-08 更新
Graph Generation with Destination-Driven Diffusion Mixture
Authors:Jaehyeong Jo, Dongki Kim, Sung Ju Hwang
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures. Although diffusion models have achieved notable success in graph generation recently, they are ill-suited for modeling the structural information of graphs since learning to denoise the noisy samples does not explicitly capture the graph topology. To tackle this limitation, we propose a novel generative process that models the topology of graphs by predicting the destination of the process. Specifically, we design the generative process as a mixture of diffusion processes conditioned on the endpoint in the data distribution, which drives the process toward the probable destination. Further, we introduce new training objectives for learning to predict the destination, and discuss the advantages of our generative framework that can explicitly model the graph topology and exploit the inductive bias of the data. Through extensive experimental validation on general graph and 2D/3D molecular graph generation tasks, we show that our method outperforms previous generative models, generating graphs with correct topology with both continuous and discrete features.
PDF
点此查看论文截图
Zero-shot Image-to-Image Translation
Authors:Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, Jun-Yan Zhu
Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse and high-quality images. However, it is still challenging to directly apply these models for editing real images for two reasons. First, it is hard for users to come up with a perfect text prompt that accurately describes every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. In this work, we propose pix2pix-zero, an image-to-image translation method that can preserve the content of the original image without manual prompting. We first automatically discover editing directions that reflect desired edits in the text embedding space. To preserve the general content structure after editing, we further propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process. In addition, our method does not need additional training for these edits and can directly use the existing pre-trained text-to-image diffusion model. We conduct extensive experiments and show that our method outperforms existing and concurrent works for both real and synthetic image editing.
PDF website: https://pix2pixzero.github.io/
点此查看论文截图
Design Booster: A Text-Guided Diffusion Model for Image Translation with Spatial Layout Preservation
Authors:Shiqi Sun, Shancheng Fang, Qian He, Wei Liu
Diffusion models are able to generate photorealistic images in arbitrary scenes. However, when applying diffusion models to image translation, there exists a trade-off between maintaining spatial structure and high-quality content. Besides, existing methods are mainly based on test-time optimization or fine-tuning model for each input image, which are extremely time-consuming for practical applications. To address these issues, we propose a new approach for flexible image translation by learning a layout-aware image condition together with a text condition. Specifically, our method co-encodes images and text into a new domain during the training phase. In the inference stage, we can choose images/text or both as the conditions for each time step, which gives users more flexible control over layout and content. Experimental comparisons of our method with state-of-the-art methods demonstrate our model performs best in both style image translation and semantic image translation and took the shortest time.
PDF
点此查看论文截图
Machine learning benchmarks for the classification of equivalent circuit models from solid-state electrochemical impedance spectra
Authors:Joachim Schaeffer, Paul Gasper, Esteban Garcia-Tamayo, Raymond Gasper, Masaki Adachi, Juan Pablo Gaviria-Cardona, Simon Montoya-Bedoya, Anoushka Bhutani, Andrew Schiek, Rhys Goodall, Rolf Findeisen, Richard D. Braatz, Simon Engelke
Analysis of Electrochemical Impedance Spectroscopy (EIS) data for electrochemical systems often consists of defining an Equivalent Circuit Model (ECM) using expert knowledge and then optimizing the model parameters to deconvolute various resistance, capacitive, inductive, or diffusion responses. For small data sets, this procedure can be conducted manually; however, it is not feasible to manually define a proper ECM for extensive data sets with a wide range of EIS responses. Automatic identification of an ECM would substantially accelerate the analysis of large sets of EIS data. Here, we showcase machine learning methods developed during the BatteryDEV hackathon to classify the ECMs of 9,300 EIS measurements provided by QuantumScape. The best-performing approach is a gradient-boosted tree model utilizing a library to automatically generate features, followed by a random forest model using the raw spectral data. A convolutional neural network using boolean images of Nyquist representations is presented as an alternative, although it achieves a lower accuracy. We publish the data and open source the associated code. The approaches described in this article can serve as benchmarks for further studies. A key remaining challenge is that the labels contain uncertainty and human bias, underlined by the performance of the trained models.
PDF Manuscript: 16 pages, 8 figures; Supplementary Information: 7 pages, 3 figures
点此查看论文截图
Divide and Compose with Score Based Generative Models
Authors:Sandesh Ghimire, Armand Comas, Davin Hill, Aria Masoomi, Octavia Camps, Jennifer Dy
While score based generative models, or diffusion models, have found success in image synthesis, they are often coupled with text data or image label to be able to manipulate and conditionally generate images. Even though manipulation of images by changing the text prompt is possible, our understanding of the text embedding and our ability to modify it to edit images is quite limited. Towards the direction of having more control over image manipulation and conditional generation, we propose to learn image components in an unsupervised manner so that we can compose those components to generate and manipulate images in informed manner. Taking inspiration from energy based models, we interpret different score components as the gradient of different energy functions. We show how score based learning allows us to learn interesting components and we can visualize them through generation. We also show how this novel decomposition allows us to compose, generate and modify images in interesting ways akin to dreaming. We make our code available at https://github.com/sandeshgh/Score-based-disentanglement
PDF
点此查看论文截图
Semantic-Guided Image Augmentation with Pre-trained Models
Authors:Bohan Li, Xinghao Wang, Xiao Xu, Yutai Hou, Yunlong Feng, Feng Wang, Wanxiang Che
Image augmentation is a common mechanism to alleviate data scarcity in computer vision. Existing image augmentation methods often apply pre-defined transformations or mixup to augment the original image, but only locally vary the image. This makes them struggle to find a balance between maintaining semantic information and improving the diversity of augmented images. In this paper, we propose a Semantic-guided Image augmentation method with Pre-trained models (SIP). Specifically, SIP constructs prompts with image labels and captions to better guide the image-to-image generation process of the pre-trained Stable Diffusion model. The semantic information contained in the original images can be well preserved, and the augmented images still maintain diversity. Experimental results show that SIP can improve two commonly used backbones, i.e., ResNet-50 and ViT, by 12.60% and 2.07% on average over seven datasets, respectively. Moreover, SIP not only outperforms the best image augmentation baseline RandAugment by 4.46% and 1.23% on two backbones, but also further improves the performance by integrating naturally with the baseline. A detailed analysis of SIP is presented, including the diversity of augmented images, an ablation study on textual prompts, and a case study on the generated images.
PDF 15 pages, 13 figures, 7 tables
点此查看论文截图
Eliminating Prior Bias for Semantic Image Editing via Dual-Cycle Diffusion
Authors:Zuopeng Yang, Tianshu Chu, Xin Lin, Erdun Gao, Daqing Liu, Jie Yang, Chaoyue Wang
The recent success of text-to-image generation diffusion models has also revolutionized semantic image editing, enabling the manipulation of images based on query/target texts. Despite these advancements, a significant challenge lies in the potential introduction of prior bias in pre-trained models during image editing, e.g., making unexpected modifications to inappropriate regions. To this point, we present a novel Dual-Cycle Diffusion model that addresses the issue of prior bias by generating an unbiased mask as the guidance of image editing. The proposed model incorporates a Bias Elimination Cycle that consists of both a forward path and an inverted path, each featuring a Structural Consistency Cycle to ensure the preservation of image content during the editing process. The forward path utilizes the pre-trained model to produce the edited image, while the inverted path converts the result back to the source image. The unbiased mask is generated by comparing differences between the processed source image and the edited image to ensure that both conform to the same distribution. Our experiments demonstrate the effectiveness of the proposed method, as it significantly improves the D-CLIP score from 0.272 to 0.283. The code will be available at https://github.com/JohnDreamer/DualCycleDiffsion.
PDF