Domain Adaptation


2023-02-03 更新

Multi-scale Feature Alignment for Continual Learning of Unlabeled Domains

Authors:Kevin Thandiackal, Luigi Piccinelli, Pushpak Pati, Orcun Goksel

Methods for unsupervised domain adaptation (UDA) help to improve the performance of deep neural networks on unseen domains without any labeled data. Especially in medical disciplines such as histopathology, this is crucial since large datasets with detailed annotations are scarce. While the majority of existing UDA methods focus on the adaptation from a labeled source to a single unlabeled target domain, many real-world applications with a long life cycle involve more than one target domain. Thus, the ability to sequentially adapt to multiple target domains becomes essential. In settings where the data from previously seen domains cannot be stored, e.g., due to data protection regulations, the above becomes a challenging continual learning problem. To this end, we propose to use generative feature-driven image replay in conjunction with a dual-purpose discriminator that not only enables the generation of images with realistic features for replay, but also promotes feature alignment during domain adaptation. We evaluate our approach extensively on a sequence of three histopathological datasets for tissue-type classification, achieving state-of-the-art results. We present detailed ablation experiments studying our proposed method components and demonstrate a possible use-case of our continual UDA method for an unsupervised patch-based segmentation task given high-resolution tissue images.
PDF

点此查看论文截图

Domain Generalization Emerges from Dreaming

Authors:Hwan Heo, Youngjin Oh, Jaewon Lee, Hyunwoo J. Kim

Recent studies have proven that DNNs, unlike human vision, tend to exploit texture information rather than shape. Such texture bias is one of the factors for the poor generalization performance of DNNs. We observe that the texture bias negatively affects not only in-domain generalization but also out-of-distribution generalization, i.e., Domain Generalization. Motivated by the observation, we propose a new framework to reduce the texture bias of a model by a novel optimization-based data augmentation, dubbed Stylized Dream. Our framework utilizes adaptive instance normalization (AdaIN) to augment the style of an original image yet preserve the content. We then adopt a regularization loss to predict consistent outputs between Stylized Dream and original images, which encourages the model to learn shape-based representations. Extensive experiments show that the proposed method achieves state-of-the-art performance in out-of-distribution settings on public benchmark datasets: PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet.
PDF 23 pages, 4 figures

点此查看论文截图

CLIPood: Generalizing CLIP to Out-of-Distributions

Authors:Yang Shu, Xingzhuo Guo, Jialong Wu, Ximei Wang, Jianmin Wang, Mingsheng Long

Out-of-distribution (OOD) generalization, where the model needs to handle distribution shifts from training, is a major challenge of machine learning. Recently, contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, revealing a promising path toward OOD generalization. However, to boost upon zero-shot performance, further adaptation of CLIP on downstream tasks is indispensable but undesirably degrades OOD generalization ability. In this paper, we aim at generalizing CLIP to out-of-distribution test data on downstream tasks. Beyond the two canonical OOD situations, domain shift and open class, we tackle a more general but difficult in-the-wild setting where both OOD situations may occur on the unseen test data. We propose CLIPood, a simple fine-tuning method that can adapt CLIP models to all OOD situations. To exploit semantic relations between classes from the text modality, CLIPood introduces a new training objective, margin metric softmax (MMS), with class adaptive margins for fine-tuning. Moreover, to incorporate both the pre-trained zero-shot model and the fine-tuned task-adaptive model, CLIPood proposes a new Beta moving average (BMA) to maintain a temporal ensemble according to Beta distribution. Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录