GAN


2023-02-01 更新

GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis

Authors:Ming Tao, Bing-Kun Bao, Hao Tang, Changsheng Xu

Synthesizing high-fidelity complex images from text is challenging. Based on large pretraining, the autoregressive and diffusion models can synthesize photo-realistic images. Although these large models have shown notable progress, there remain three flaws. 1) These models require tremendous training data and parameters to achieve good performance. 2) The multi-step generation design slows the image synthesis process heavily. 3) The synthesized visual features are difficult to control and require delicately designed prompts. To enable high-quality, efficient, fast, and controllable text-to-image synthesis, we propose Generative Adversarial CLIPs, namely GALIP. GALIP leverages the powerful pretrained CLIP model both in the discriminator and generator. Specifically, we propose a CLIP-based discriminator. The complex scene understanding ability of CLIP enables the discriminator to accurately assess the image quality. Furthermore, we propose a CLIP-empowered generator that induces the visual concepts from CLIP through bridge features and prompts. The CLIP-integrated generator and discriminator boost training efficiency, and as a result, our model only requires about 3% training data and 6% learnable parameters, achieving comparable results to large pretrained autoregressive and diffusion models. Moreover, our model achieves 120 times faster synthesis speed and inherits the smooth latent space from GAN. The extensive experimental results demonstrate the excellent performance of our GALIP. Code is available at https://github.com/tobran/GALIP.
PDF 11 pages

点此查看论文截图

Few-shot Face Image Translation via GAN Prior Distillation

Authors:Ruoyu Zhao, Mingrui Zhu, Xiaoyu Wang, Nannan Wang

Face image translation has made notable progress in recent years. However, when training on limited data, the performance of existing approaches significantly declines. Although some studies have attempted to tackle this problem, they either failed to achieve the few-shot setting (less than 10) or can only get suboptimal results. In this paper, we propose GAN Prior Distillation (GPD) to enable effective few-shot face image translation. GPD contains two models: a teacher network with GAN Prior and a student network that fulfills end-to-end translation. Specifically, we adapt the teacher network trained on large-scale data in the source domain to the target domain with only a few samples, where it can learn the target domain’s knowledge. Then, we can achieve few-shot augmentation by generating source domain and target domain images simultaneously with the same latent codes. We propose an anchor-based knowledge distillation module that can fully use the difference between the training and the augmented data to distill the knowledge of the teacher network into the student network. The trained student network achieves excellent generalization performance with the absorption of additional knowledge. Qualitative and quantitative experiments demonstrate that our method achieves superior results than state-of-the-art approaches in a few-shot setting.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录