Domain Adaptation


2023-01-30 更新

Universal Domain Adaptation for Remote Sensing Image Scene Classification

Authors:Qingsong Xu, Yilei Shi, Xin Yuan, Xiao Xiang Zhu

The domain adaptation (DA) approaches available to date are usually not well suited for practical DA scenarios of remote sensing image classification, since these methods (such as unsupervised DA) rely on rich prior knowledge about the relationship between label sets of source and target domains, and source data are often not accessible due to privacy or confidentiality issues. To this end, we propose a practical universal domain adaptation setting for remote sensing image scene classification that requires no prior knowledge on the label sets. Furthermore, a novel universal domain adaptation method without source data is proposed for cases when the source data is unavailable. The architecture of the model is divided into two parts: the source data generation stage and the model adaptation stage. The first stage estimates the conditional distribution of source data from the pre-trained model using the knowledge of class-separability in the source domain and then synthesizes the source data. With this synthetic source data in hand, it becomes a universal DA task to classify a target sample correctly if it belongs to any category in the source label set, or mark it as unknown" otherwise. In the second stage, a novel transferable weight that distinguishes the shared and private label sets in each domain promotes the adaptation in the automatically discovered shared label set and recognizes theunknown’’ samples successfully. Empirical results show that the proposed model is effective and practical for remote sensing image scene classification, regardless of whether the source data is available or not. The code is available at https://github.com/zhu-xlab/UniDA.
PDF 15 pages, 6 figures, IEEE Transactions on Geoscience and Remote Sensing

点此查看论文截图

Generalized Planning as Heuristic Search: A new planning search-space that leverages pointers over objects

Authors:Javier Segovia-Aguas, Sergio Jiménez, Anders Jonsson

Planning as heuristic search is one of the most successful approaches to classical planning but unfortunately, it does not extend trivially to Generalized Planning (GP). GP aims to compute algorithmic solutions that are valid for a set of classical planning instances from a given domain, even if these instances differ in the number of objects, the number of state variables, their domain size, or their initial and goal configuration. The generalization requirements of GP make it impractical to perform the state-space search that is usually implemented by heuristic planners. This paper adapts the planning as heuristic search paradigm to the generalization requirements of GP, and presents the first native heuristic search approach to GP. First, the paper introduces a new pointer-based solution space for GP that is independent of the number of classical planning instances in a GP problem and the size of those instances (i.e. the number of objects, state variables and their domain sizes). Second, the paper defines a set of evaluation and heuristic functions for guiding a combinatorial search in our new GP solution space. The computation of these evaluation and heuristic functions does not require grounding states or actions in advance. Therefore our GP as heuristic search approach can handle large sets of state variables with large numerical domains, e.g.~integers. Lastly, the paper defines an upgraded version of our novel algorithm for GP called Best-First Generalized Planning (BFGP), that implements a best-first search in our pointer-based solution space, and that is guided by our evaluation/heuristic functions for GP.
PDF Under review in the Artificial Intelligence Journal (AIJ)

点此查看论文截图

Case-Based Reasoning with Language Models for Classification of Logical Fallacies

Authors:Zhivar Sourati, Filip Ilievski, Hông-Ân Sandlin, Alain Mermoud

The ease and the speed of spreading misinformation and propaganda on the Web motivate the need to develop trustworthy technology for detecting fallacies in natural language arguments. However, state-of-the-art language modeling methods exhibit a lack of robustness on tasks like logical fallacy classification that require complex reasoning. In this paper, we propose a Case-Based Reasoning method that classifies new cases of logical fallacy by language-modeling-driven retrieval and adaptation of historical cases. We design four complementary strategies to enrich the input representation for our model, based on external information about goals, explanations, counterarguments, and argument structure. Our experiments in in-domain and out-of-domain settings indicate that Case-Based Reasoning improves the accuracy and generalizability of language models. Our ablation studies confirm that the representations of similar cases have a strong impact on the model performance, that models perform well with fewer retrieved cases, and that the size of the case database has a negligible effect on the performance. Finally, we dive deeper into the relationship between the properties of the retrieved cases and the model performance.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录