无监督/半监督/对比学习


2023-01-18 更新

USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text Retrieval

Authors:Yan Zhang, Zhong Ji, Di Wang, Yanwei Pang, Xuelong Li

As a fundamental and challenging task in bridging language and vision domains, Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality, and its key challenge is to measure the semantic similarity across different modalities. Although significant progress has been achieved, existing approaches typically suffer from two major limitations: (1) It hurts the accuracy of the representation by directly exploiting the bottom-up attention based region-level features where each region is equally treated. (2) It limits the scale of negative sample pairs by employing the mini-batch based end-to-end training mechanism. To address these limitations, we propose a Unified Semantic Enhancement Momentum Contrastive Learning (USER) method for ITR. Specifically, we delicately design two simple but effective Global representation based Semantic Enhancement (GSE) modules. One learns the global representation via the self-attention algorithm, noted as Self-Guided Enhancement (SGE) module. The other module benefits from the pre-trained CLIP module, which provides a novel scheme to exploit and transfer the knowledge from an off-the-shelf model, noted as CLIP-Guided Enhancement (CGE) module. Moreover, we incorporate the training mechanism of MoCo into ITR, in which two dynamic queues are employed to enrich and enlarge the scale of negative sample pairs. Meanwhile, a Unified Training Objective (UTO) is developed to learn from mini-batch based and dynamic queue based samples. Extensive experiments on the benchmark MSCOCO and Flickr30K datasets demonstrate the superiority of both retrieval accuracy and inference efficiency. Our source code will be released at https://github.com/zhangy0822/USER.
PDF

点此查看论文截图

Self-Supervised Image-to-Point Distillation via Semantically Tolerant Contrastive Loss

Authors:Anas Mahmoud, Jordan S. K. Hu, Tianshu Kuai, Ali Harakeh, Liam Paull, Steven L. Waslander

An effective framework for learning 3D representations for perception tasks is distilling rich self-supervised image features via contrastive learning. However, image-to point representation learning for autonomous driving datasets faces two main challenges: 1) the abundance of self-similarity, which results in the contrastive losses pushing away semantically similar point and image regions and thus disturbing the local semantic structure of the learned representations, and 2) severe class imbalance as pretraining gets dominated by over-represented classes. We propose to alleviate the self-similarity problem through a novel semantically tolerant image-to-point contrastive loss that takes into consideration the semantic distance between positive and negative image regions to minimize contrasting semantically similar point and image regions. Additionally, we address class imbalance by designing a class-agnostic balanced loss that approximates the degree of class imbalance through an aggregate sample-to-samples semantic similarity measure. We demonstrate that our semantically-tolerant contrastive loss with class balancing improves state-of-the art 2D-to-3D representation learning in all evaluation settings on 3D semantic segmentation. Our method consistently outperforms state-of-the-art 2D-to-3D representation learning frameworks across a wide range of 2D self-supervised pretrained models.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录